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Abstract—Autonomous driving has witnessed incredible ad-
vances in the past several decades, while Multi-Agent Reinforce-
ment Learning (MARL) promises to satisfy the essential need of au-
tonomous vehicle control in a wireless connected vehicle networks.
In MARL, how to effectively decompose a global feedback into the
relative contributions of individual agents belongs to one of the most
fundamental problems. However, the environment volatility due
to vehicle movement and wireless disturbance could significantly
shape time-varying topological relationships among agents, thus
making the Value Decomposition (VD) challenging. Therefore, in
order to cope with this annoying volatility, it becomes imperative
to design a dynamic VD framework. Hence, in this article, we
propose a novel Stochastic Value Mixing (SVMIX) methodology
by taking account of dynamic topological features during VD and
incorporating the corresponding components into a multi-agent
actor-critic architecture. In particular, Stochastic Graph Neural
Network (SGNN) is leveraged to effectively capture underlying
dynamics in topological features and improve the flexibility of
VD against the environment volatility. Finally, the superiority of
SVMIX is verified through extensive simulations.

Index Terms—Autonomous vehicle control, multi-agent reinfor-
cement learning, value decomposition, stochastic graph neural
network.

I. INTRODUCTION

IN RECENT years, the unprecedented development of artifi-
cial intelligence (AI) brings self-driving vehicles [2], [3], [4]

into the spotlight, and these intelligent vehicles form an Internet
of Vehicles (IoV). Equipped with the capability for environmen-
tal perception [5], the vehicles try to respond to the observation
of the surroundings and find an optimal trajectory between two
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sites [6], [7] with calibrated self-decision control and traffic
congestion avoidance [8], [9]. Additionally, there emerges some
research interest towards traffic signal control [10] or fleet
control [11] in IoV as well. Nevertheless, these intricate cases
(e.g., traffic control) require distributively deployed intelligent
vehicles to collaborate on top of reliable communication, which
further constitutes a Multi-Agent System (MAS) and catalyses
the research progress in a myriad of related studies (e.g., traffic
control and prediction) [12], [13]. In particular, Multi-Agent
Reinforcement Learning (MARL), which incorporates Deep
Reinforcement Learning (DRL) into MAS, emerges by astutely
learning through the trial-and-error interaction between multiple
agents (i.e., vehicles) and the complicated IoV environment,
and promises to yield smart policies for the formulated Markov
Decision Process (MDP).

Traditionally, in Independent Q-Learning (IQL) [14], one
typical kind of MARL methods, each individual agent learns its
policy by regarding other agents as parts of the environment, and
often experiences a non-stationary environment, as the agents
always update their policies independently during the learning.
Consequently, the non-stationary issue impedes the optimization
of agents’ policies. Instead, mutual communication shall be
considered for cooperative agents to reach holistic consistency.
On the other hand, it is natural for MAS to only observe a global
reward from the environment, from which it is usually infeasible
to accurately infer individual rewards for agents due to their
complicated relationship. Thus it becomes essential to tackle
with the agent heterogeneity and credit assignment issue [15].

In recent years, algorithms with Centralized Training and
Decentralized Execution (CTDE) have become the centerpiece
of MARL as they can somewhat handle the aforementioned two
problems (i.e., non-stationary learning, and credit assignment).
As its name implies, CTDE can be divided into the training
phase and execution phase. In particular, in the training phase,
agents can implicitly observe the global information of the
environment in a centralized manner, so as to guarantee the
communication among agents and tackle the non-stationary
problem. Subsequently, in the decentralized execution phase,
each agent capably makes decisions based on its local ob-
servation only. Typical examples of CTDE include MADDPG,
COMA, etc [15], [16], [17], [18]. Nevertheless, as the number
of agents increases, the centralized action-value function in
CTDE algorithms such as COMA suffers from an exponential
increase of the action space as well as the awful growth of
computational complexity. Therefore, the Value Decomposition
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(VD)-based algorithms [17], [18], [19], [20] are proposed to
decompose a centralized value function into individual ones,
thus decreasing the computational complexity in CTDE. Re-
gretfully, these methods mostly concentrate on learning from
agents with the invariant communication topology [20], [21],
but flounder under dynamic environments entailing uncertainty
and perturbation due to fluctuating connections and dynamically
changing topologies. Meanwhile, most of VD-based MARL
methods focus on the decomposition of action-value function,
and the policies of individual agents could easily get stuck at
sub-optimal solutions owing to the environmental complexity
and the awful number of state-action pairs.

On the other hand, the advent of Graph Neural Network
(GNN) [22] makes it possible to capture the topological fea-
tures of vehicle-formed graphs. For example, the spectral-based
GNNs [23] can filter the noise and extract features of signals
in the transformed frequency domain. However, most of GNNs
concentrate on the deterministic graphs during the training phase
and ignore the time-varying underlying topologies with internal
perturbations in some scenarios (e.g., the possibly disconnected
communication links due to the vehicle mobility and limited
communication ranges in traffic control) [20]. Therefore, it’s
reasonable to re-design the VD-based method by taking account
of the graph stochasticity during the training phase [24], so as to
capture dynamic topological features and enhance the robustness
of learned policies.

In this article, we focus on dealing with the self-decision
control in IoV for intelligent traffic control. Inspired by the
Value Mixing (VMIX) module [17], we propose the brand-new
Stochastic VMIX (SVMIX) MARL algorithm. Compared to
previous works in [17], [19] and [20], SVMIX adopts Stochastic
Graph Neural Network (SGNN) [25] to capture the dynamic
topological features of the time-varying graphs and further
decompose the state-value function. Besides, in order to tackle
with the continuous action control, SVMIX successfully incor-
porates theVMIXmodule into the Proximal Policy Optimization
(PPO)-based CTDE architecture [26]. Notably, the performance
after introducing SGNN to PPO for VD still heavily relies on
the selection of a suitable decomposition target from several
candidate options (i.e., action-value function, reward function,
and state-value function). In most existing works [17], [18],
[19], [20], it commonly relies on the decomposition of the
action-value function (i.e.,Q-value function) such asQMIX [17].
Nevertheless, given the awful size of action space, it might be
difficult to accurately approximateQ-value function for all state-
action pairs, thus incurring misleading Q values and leading
to sub-optimal individual actions. On the other hand, directly
decomposing a global reward into individual ones faces severe
learning instabilities. Therefore, in contrast to these adopted
approaches for reward decomposition or Q-value decomposi-
tion, we resort to a rather distinctive means by decomposing
the state-value function, so as to mitigate the approximation
difficulty and avoid a local optimum. The contribution of this
article can be summarized as follows.
� We incorporate SGNN in the VD-based MARL method,

and propose a novel MARL method (i.e., SVMIX), which
first applies state-value VD on top of PPO [26] (a kind

of RL algorithm within the actor-critic framework). By
introducing SGNN, SVMIX can intentionally aggregate the
information of agents through different randomly sampled
graphs to imitate the practically dynamic connectivity of
vehicles and therefore endow vehicles with the capability
to resist the environmental disturbance.

� We theoretically analyze the role that SGNN plays in the
MARL method and manifest the importance and effec-
tiveness that captured dynamical topological features con-
tribute to a feasible solution for estimating individual value
functions of each agent.

� We verify the performance of SVMIX on extensive simula-
tion settings. Compared with several benchmark MARL
methods (i.e., QMIX [17], MGAN [20] and FIRL [27]),
SVMIX demonstrates its superiority and stability in bal-
ancing the convergence rate and utility. More significantly,
unlike most of the CTDE algorithms which employ the
information of all agents during the training, the adop-
tion of SGNN in SVMIX allows to gather and utilize the
information from part of agents to maintain competitive
performance. Hence, SVMIX contributes to reducing com-
munication overheads as well.

The reminder of the article is organized as follows. Section II
briefly introduces the related works. Section III presents the nec-
essary background and formulates the system model. Section IV
describes the implementation details of the proposed algorithm
and presents theoretical analysis. In Section V, we introduce the
experimental settings and discuss the related simulation results.
Section VI concludes the article and discusses future research
directions.

II. RELATED WORKS

The traditional physics-based models [28], [29] for au-
tonomous vehicle control are data-efficient as there are only
a few parameters to calibrate with mathematically tractabil-
ity [30]. However, these models lie on strong assumptions on
traffic scenarios and cannot quickly adapt to the protean en-
vironment in practice. Instead, AI has been widely adopted in
the field of IoV, and DRL belongs to one of the most funda-
mental tools [31], taking the observation (e.g., the extracted
features from the perception components and the information
of nearby vehicles) as input and making self-decision control
(e.g., on the acceleration and direction) the same as the clas-
sic controller. Besides, deep learning methods like Convolu-
tional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) have also made great progress in vision-based detection
and prediction-based control [32]. Meanwhile, through learning
from the driving data of human beings, imitation learning is
able to generate a policy similar to the style of human driving
as well [33].

Furthermore, the MARL method stands out for MAS in IoV
where the communication & collaboration of multiple agents
is essential. Notably, a direct application such as IQL faces
non-stationary IoV environment while a conventional MARL
method encounters credit assignment issues [14], [15]. Instead,
CTDE has become one of the most popular paradigms. For
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example, within the actor-critic framework, [15] and [16] utilize
a centralized critic for centralized training as well as multiple
actors for decentralized execution. Besides, [17], [18], [19], [20]
apply VD and decompose the joint value function into individual
ones corresponding to each agent. These methods somewhat
deal with the credit assignment with reduced computational
costs. In addition, some researchers focus on the communication
between agents. Foerster et al. [34] assume the availability of the
communication of all the agents while Jiang and Lu [35] rely on
the local communication for agents within a certain proximity.
Mao et al. [21] further limit the communication to allow each
agent to observe the information of its neighbours only. To
tackle the exponentially growing action space, Yang et al. [36]
apply the Mean Field Theory (MFT) to treat the other agents
as an ensemble for every agent, thus significantly reducing the
computation cost and complexity.

Towards MARL-enabled autonomous vehicle control, Yang
et al. [13] assign an individual modified PPO agent as the
DRL controller for each vehicle and traffic light, so as to allow
traffic lights to capably collaborate with autonomous vehicles.
Specially, agents in [13] observe the local information inde-
pendently. Bhalla et al. [37] improve the algorithm in [34]
through the more effective communication among agents with
message approximation and verify the superiority of the im-
proved algorithm in a highway autonomous driving scenario.
Palanisamy [38] assumes that each agent can take the other
agents’ policies into account, and adopts a Markov game-based
DRL. Benefiting from the information exchange among ve-
hicles, Xu et al. [27] incorporate a consensus algorithm with
federated learning within the CTDE structure. Similarly, Chen
et al. [39] leverage GNN to aggregate the node feature of each
vehicle based on the communication graph in IoV and learn
a joint policy via a centralized DRL agent. In order to elimi-
nate collisions and optimize overall traffic flow at intersections,
Guillen-Perez and Cano [40] implement a kind of joint decision
making model for vehicles, by incorporating RNN into DRL
and allowing the communication of agents for decision making.
Guo et al. [41] improve QMIX for automated vehicles control
at intersections and obtain superior performance than QMIX
in terms of the higher speed and less probability of collisions.
Nevertheless, the aforementioned researches seldom shed light
on the dynamic topological connection of the vehicles.

III. PRELIMINARIES AND SYSTEM MODEL

In this section, we briefly introduce the related knowledge of
MDP and VD-based methods, and present the formulated system
model to apply MARL for the autonomous vehicle control.

A. Preliminaries

We have listed the important notations used in this article in
Table I.

Generally, an MARL task is formulated as a Decentral-
ized Partially Observable Markov Decision Process (Dec-
POMDP) [42], which is defined by the tuple 〈I,S,A,P,Ω,
O,R, γ〉. Here we assume that all agents are homogeneous.
I represents the set of N agents, S is the state space, A is

TABLE I
MAIN NOTATIONS USED IN THIS PAPER

the action space for a single agent and A := AN is the joint
action space. The joint action a = {a(1), a(2), . . . , a(N)} taken
at the current state s results in the next state s′ through a
transition of environment according to the transition function
P(s′|s,a) : S ×A× S → [0, 1]. Owing to the scant ability of
perception against the colossal environment, agent i gets a local
observation o(i) ∈ Ω via the observation function O(o(i)|s, i) :
S × I × Ω→ [0, 1] instead of s at each time-step. All agents
share a global reward function R(s,a) : S ×A→ R and γ
denotes the discount factor.

Furthermore, in a Dec-POMDP, agent i adopts an action
according to its policy π(i)(·|o(i)) : Ω×A → [0, 1], which de-
notes the probability distribution of taking action a(i) ∈ A
conditioned on o(i). Likewise, a is adopted according to the
probability π(a|o) = ∏N

i=1 π
(i)(a(i)|o(i)) where π denotes the

joint policy and o = {o(1), . . . , o(N)} implies the joint obser-
vation which can be generated from st. In order to coordinate
all agents for maximizing the discounted accumulated return
J =

∑∞
t=0 γ

tR(st,at), a joint action-value function is defined
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as the expected discounted accumulated return starting from st
and at at time-step t. That is

Qπ(st,at) = EP

[ ∞∑
k=t

γk−tR (sk,ak) |st,at, π

]
, (1)

where EP(·) means the expectation of all possible discounted
accumulated returns according to P given the initial st and at.
It can also be observed that the function has an exponential
computational complexity due to the joint action at.

To deal with this scalability issue while pursuing the optimal
joint policy π∗ = argmaxπ Q

π(st,at), instead of adopting a
joint action-value function as in (1), VD-based methods [17],
[18], [19], [20] adhibit an individual action-value function
Qπ(i)

(o
(i)
t , a

(i)
t ) = EP

[∑∞
k=t γ

k−tr(i)k |o(i)t , a
(i)
t , π(i)

]
for agent

i, where r
(i)
k is the implicitly approximated individual reward

of agent i with respect to R(sk,ak). Moreover, the individ-
ual action-value function reflects different contributions among
agents. As discussed earlier, the decomposition of Q-value
function for all state-action pairs possibly incurs misleading Q
values and leads to sub-optimal individual actions.

Recalling that the expected J from st can also be represented
by the joint state-value function

V π(st) = EP,at∼π(·|ot)

[ ∞∑
k=t

γk−tR (sk,ak) |st, π
]
, (2)

the joint state-value function V π(st) is exactly a comprehensive
evaluation ofJ from st, and is commonly used for calculating the
advantage value of different actions atst as a baseline [43]. Using
VD, we can also represent the individual state-value function of
agent i as

V π(i)
(
o
(i)
t

)
= EP,at∼π(i)(·|o(i)t )

[ ∞∑
k=t

γk−tr(i)k |o(i)t , π(i)

]
,

(3)
which can be approximated by the individual agent and learned
from the joint function in (2).

B. System Model

We primarily consider a mixed autonomy traffic system model
that permits vehicles to flow in and out of road, leading to
the changes in the number of vehicles. At time-step t, there
are totally Mt vehicles (including N DRL-driven vehicles and
Mt ≥ N ) as well as intersections or ramps as depicted in Fig. 1.
For vehicle i, it has access to the velocity v

(i)
t ∈ R and the

position z
(i)
t = (x

(i)
t , y

(i)
t ) ∈ R

2 of itself at t. Meanwhile, v(i)t

is controlled via the acceleration u
(i)
t ∈ R decided by vehicle i

itself. It’s also necessary for vehicles to obey some traffic rules.
For example, at an intersection, the vehicle has to consider an
appropriate passing order as well as control its direction and
velocity so as to avoid collisions. Based on the above definition,
we have the elements of the corresponding Dec-POMDP as
follows.

1) State and Observation: In our scenario, each vehicle can
receive the information of other accessible vehicles through

Fig. 1. Traffic control scenario with ramps, intersections and vehicles with a
constrained communication range.

Vehicle-to-Vehicle (V2V) connections. Without loss of gen-
erality, assuming that vehicle i is only able to communicate
with vehicles j and k at t, the observation of vehicle i can be
represented as o(i)t = {v(i)t , z

(i)
t , v

(j)
t , z

(j)
t , v

(k)
t , z

(k)
t }. The state

consists of the velocities and positions of all vehicles and can
be represented by st = {v(1)

t , z
(1)
t , v

(2)
t , z

(2)
t , . . . , v

(Mt)
t , z

(Mt)
t }.

Intuitively, the observation o
(i)
t is a part of st, which can be

mathematically determined by O(o(i)t |st, i).
2) Action: At time-step t, vehicle i adopts an action rep-

resented as a
(i)
t = {u(i)

t , q
(i)
t }, where q

(i)
t is an extra action

that indicates whether the vehicle changes to another lane or
direction. In particular, the N DRL-driven vehicles select their
actions according to the learned policies instead of the others
with fixed policies.

3) Reward: The goal of MARL for each vehicle is to maintain
a velocity as close to the pre-set desired velocity vd as possible on
the basis of no undesirable collisions. Accordingly, the reward
rt := R(st,at) is set as

rt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
Mtvd−

√∑Mt
i=1(vd−v(i)

t )2

√
Mtvd+C1

−αD(z(1), . . . , z(Mt)), if no collision;

0, otherwise,

(4)

where C1 is a very small constant. D(z(1), . . . , z(Mt)) is the
penalty term with a safety coefficient α that hopes the vehicle to
hold a safe distance with its preceding vehicle. (4) implies that
MARL encourages the vehicle to choose a satisfactory velocity
which deviates trivially from vd while spares no efforts to avoid
collisions at t. Notably, all the Mt vehicles participate in the
calculation of the global reward.

On the other hand, the wireless-connected intelligent vehicles
in IoV constitute a time-varying undirected graph Gt = {V, Et},
where each agent is denoted as a vertex and a communication
link is regarded as an edge. In other words, V = {1, 2, . . . , N}
while an undirected edge in Et corresponds to a V2V connection
between two vehicles. It is worth recalling that the mobility of
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vehicles will frequently change the connections among vehi-
cles due to the limited communication range and thus induce
topological changes. For example, if a vehicle meets another
vehicle at an intersection, it’s obvious that a strong connection
between them could be set up in order to avoid collisions.
Additionally, the time-varying number of vehicles also results
in the fluctuation of the number of vertices in Gt. For simplicity
and without losing the rationality, we will treat the vertices of
Gt as fixed.

C. Problem Formulation

Following the system model, we expect the DRL-driven ve-
hicle to maintain a regular speed that is close to its desired
velocity on the premise of avoiding collisions. Therefore we
have proposed a utility function U as the objective of policy
optimization, which can be mathematically formulated as

max
π

U = Et [rt|π] . (5)

Here Et(·) means the expectation in a trajectory. In other words,
the agents aim to learn a joint policy π under the guidance of
maximizing the utility (i.e., the expected reward). Notably, for
CTDE, the optimization ofπ is equivalent to learn the optimal in-
dividual policies of agents [17]. Therefore, (5) implies to devise
an appropriate VD method for CTDE in volatile environment,
so as to derive the optimal individual policy of each agent.

IV. ARCHITECTURE AND DESIGNATION OF SVMIX

In this section, we describe the architecture and components
of the proposed SVMIX algorithm as depicted in Fig. 2. First, we
use PPO as the basis of each individual DRL agent. Afterwards,
in order to attain proper individual state-value functions of the
N agents from the total (or joint) state-value function through
the VMIX network, we highlight how to leverage SGNN [25] to
effectively capture the topological features from the dynamic
graph Gt.

Next we will introduce these essential components (i.e., PPO,
SGNN and VMIX) in SVMIX as well as the training procedure.
As SGNN is the centerpiece of our algorithm, we also mathe-
matically explain why SGNN can help PPO agents to learn the
appropriate solutions.

A. PPO-Based RL Agents

Belonging to one of the most famous Policy Gradient (PG)
algorithms extensively used for continuous action control, PPO
is composed of an actor network and a critic network, where the
former is responsible for taking actions in accordance with its
learned policy while the latter produces an approximated indi-
vidual state-value function. Notably, in this article, we consider
a DRL-driven vehicle and a PPO-based agent are equivalent.

As illustrated in Fig. 3, for agent i, the actor outputs the
mean μi(o

(i)
t ) and the standard deviation σi(o

(i)
t ) of a normal

distribution N (μi(o
(i)
t ), σ2

i (o
(i)
t )) (i.e. the policy π(i)(·|o(i)t ))

through a Multi-Layer Perception (MLP) taking o
(i)
t as input

with nonlinear activation functions (omitted from Fig. 3 for

Fig. 2. Illustration of the SVMIX algorithm for autonomous vehicle control.
PPO agents take at and approximate the state-values V (ot) according to local
observations ot. Both SGNN and VMIX play the role of value decomposition,
by sequentially processing the raw individual state-values.

Fig. 3. PPO agent within the actor-critic architecture.

simplicity). Sequentially, following π(i)(·|o(i)t ), the PPO agent
samples an action a

(i)
t from N (μi(o

(i)
t ), σ2

i (o
(i)
t )) at t for bal-

ancing the exploration and the exploitation. Besides, the critic
approximates the state-value function and produces a state-value
V (i)(o

(i)
t ) through another MLP.

After that, the joint action at is taken and the environment
correspondingly enters the next state st+1, thus shifting the
next joint observation to ot+1 and yielding a global reward rt.
Notably, during this procedure, to better represent the total value
function related to the dynamic graph, individual state-values are
further processed through SGNN-based feature extraction and
aggregation.
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Fig. 4. Structure of SGNN, which consists of several parallel stochastic graph
filters and an MLP for signal aggregation.

B. Topological Feature Extraction and Filtering by SGNN

As mentioned before, the vehicles can form an undirected
graph Gt = {V, Et}. Thus motivated by the extraordinary
achievements of GNN to tackle the topology issues, we pro-
pose to apply graph signal processing techniques for feature
extraction, by treating each individual state-value V (i)(o

(i)
t ) as

the signal of one corresponding vertex in Gt. Furthermore, we
argue that SGNN makes a good complement to deal with the
dynamic graph in traffic control.

Fig. 4 demonstrates that SGNN consists of stochastic graph
filters and the READOUT mechanism for output integration.
SGNN mainly adopts stochastic graph filters to fit the environ-
ment volatility based on the Random Edge Sampling (RES)
model [24] with the underlying graph G+ = {V, E+}, wherein
E+ encompasses all sets of edges Et for all t (i.e., Et ⊆ E+, ∀t).
Besides, we define the adjacent matrix A ∈ R

N×N where an
entry Am,n is nonzero if and only if (m,n) ∈ E+, as well as the
Laplacian matrix L = diag(A1)−A for G+. In particular, a
random sub-graph G+k = {V, E+k } will be constructed by hold-
ing the original vertices of G+ but sampling the edges from E+
following a Bernoulli distribution with a success probability p.
That is,

Pr
[
(m,n) ∈ E+k

]
= p, for all (m,n) ∈ E+. (6)

Through RES, we can emulate dynamic graphs where the V2V
connections (edges) vary frequently. Therefore, to exert the
advantage of centralized training, we actually let G+ be a
generalized fixed graph encompassing all potential connections
between vertices, so as to ensure enough exploration.

In detail, Fig. 5 demonstrates the corresponding structure of
a K-order stochastic graph filter. Based on the input V (ot) =

{V (1)(o
(1)
t ), . . . , V (N)(o

(N)
t )} ∈ R

N from PPO agents as well
as the stochastic sub-graphs G+k corresponding to the adjacent
matrix Ak, the information among vertices recursively dif-
fuses as V k(ot) = SkV k−1(ot), k ∈ {0, . . . ,K}while S0 = I
(where I denotes the identity matrix) andV 0(ot) = S0V (ot) =
V (ot) for k = 0. Here S denotes the shift matrix and we can
either have Sk = Ak + I or Sk = Lk. Therefore, unrolling the

Fig. 5. Stochastic graph filter ofK orders, whereG+1 , . . . ,G+K are the sampled
sub-graphs based on G+ through RES. Here we only show how the information
of the green vertex is updated via green edges.

recursion, the intermediate signal can be represented as

V k(ot) = SkV k−1(ot) = (SkSk−1 · · ·S0)V (ot)

:= Sk:0V (ot), (7)

where Sk:0 is defined as Sk:0 := SkSk−1 · · ·S0. Hence, V k(ot)
aggregates the information of V (ot) through the random se-
quence of sub-graphs G+1 , . . . ,G+k . Ultimately, the output u of a
K-order stochastic graph filter with filter coefficients {hk}Kk=0
can be formulated as

u =

K∑
k=0

hkV k(ot) =

K∑
k=0

hkSk:0V (ot)

:= H (SK:0)V (ot). (8)

Specifically, H(SK:0) denotes the stochastic graph filter with
learnable parameters h0, . . . , hK .

Furthermore, we can use F parallel stochastic graph filters
{H(SK:0)}Ff=0 with coefficientsH = {hfk}F,K

f=1,k=0 to process
V (ot). In particular, for the f -th stochastic graph filter, the
output can be given on top of (8) as

V ′f (ot) = σ [uf ] = σ [Hf (SK:0)V (ot)]

= σ

[
K∑
k=0

hfkSf,k:0V (ot)

]
, (9)

where σ(·) is the nonlinear activation function ReLU.
Subsequently, the mechanism READOUT(·) : RN×F → R

N

is implemented to integrate the outputs of the stochastic graph
filters through a two-layer MLP as

V agg(ot) = READOUT({V ′1(ot), . . . ,V
′
F (ot)}). (10)

Finally, SGNN captures dynamic topological features through
stochastic graph filters with learnable filter coefficients H and
random sub-graphs generated by RES. That is, the filtered
state-values V agg(ot) involve dynamic topological features.
Notably, consistent with methodology of CTDE, SGNN requires
the information in every vertex as input in the centralized training
phase, while it can be neglected at the decentralized execution
phase.

C. The Role of SGNN

Intuitively, RES in SGNN brings substantial uncertainty to
capture underlying topological features. Therefore, it’s neces-
sary to clarify the role of SGNN in SVMIX with theoretical
analysis. Concentrating on the stochastic graph filter defined
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in (8) on the basis of RES, for a given graph G+ and V (ot) as
input, the expected output can be given by

E [u] = E [H (SK:0)V (ot)] = E

[
K∑
k=0

hkSk:0

]
V (ot). (11)

Here E specially denotes the expectation according to RES for
a certain V (ot). Let Sk = S+Δk where S = E[Sk] and Δ
represents the error matrix, we further get E[Δk] = 0 and

E

[
K∑
k=0

hkSk:0

]

=

K∑
k=0

hkE [SkSk−1 · · ·S0]

=

K∑
k=1

hkE
[(
S+Δk

) · · · (S+Δ1
)]

+ h0I

=
K∑
k=1

hkS
k
+ h0I (12)

as E[ΔmΔn] = E[Δm]E[Δn] = 0 if m �= n given the mutual
independence between the samplings.

1) If Sk = Lk, for an entry Sm,n in S, we have

Sm,n =

{
−pAm,n, m �= n;

pdm, else,
(13)

where dm represents the degree of vertex m. Therefore,
S = pL, and finally we get E[u] = (

∑K
k=1 hkp

kLk +
h0I)V (ot).
As L is a real symmetry matrix, it can be transformed
intoL = PΣPT through eigendecomposition whereΣ =
diag(λ1, λ2, . . . , λN )with λ1 ≥ λ2 ≥ · · · ≥ λN . Notably,
λN ≡ 0 as L always has an eigenvector 1 corresponding
to the eigenvalue 0, and the algebraic multiplicity of λN

equals the number of connected components in G+ [44].
Considering the influence of filtering coefficients {hk}Kk=0

and probability p,
∑K

k=1 hkp
kLk + h0Iwill be a full-rank

matrix (e.g., if hk > 0 for k = 0, 1, . . . ,K, the eigenval-

ues of
∑K

k=1 hkS
k
+ h0I can be λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃N =

h0 > 0).
2) If Sk = Ak + I, we have Sm,n as

Sm,n = E [Ak + I]m,n =

{
pAm,n, m �= n;

1, else.
(14)

We can also express the real symmetry matrix as S =
PΣPT via eigendecomposition where Σ = diag(λ1,
λ2, . . . , λN ). Assuming that G+ is a fully connected
graph, there will be λ1 = 1 + (N − 1)p and λ2 = λ3 =
· · · = λN = 1− p. Thus, choosing a feasible p and tak-

ing {hk}Kk=0 into account,
∑K

k=1 hkS
k
+ h0I can be a

full-rank matrix as well.
Based on the above analysis, we have proved thatE[H(SK:0)]

can be full-rank with appropriate {hk}Kk=0 and p. Hence, for a

Fig. 6. Structure of the VMIX module.

given expected output E[u], there must be a nontrivial solution
V (ot) that satisfies (11).

Together with (9) and (10) which show the relationship be-
tween u and V agg(ot), it becomes reasonable to use SGNN
for feature extraction because V (ot) can finally be mapped to
V

(i)
agg (ot) where

V (i)
agg (ot) = [V agg(ot)]i

= EP,at∼π(·|ot)

[ ∞∑
k=t

γk−tr̂(i)k |ot, π

]
. (15)

In other words, the individual state-value functions further take
the observations and policies of other agents as well as the
dynamics of topology into account. Consequently, r̂(i)k can be
regarded as a more accurate approximation of the individual
reward compared to r

(i)
k in (2) after sufficient training.

By the way, as G+ is generalized for all possible Gt through
RES during training, SGNN is able to explore the topologies that
may appear, thus learning stable graph signal filters. Therefore,
SVMIX ultimately obtain the capability of anti-disturbance.
During this procedure, SGNNwill be the important intermediate
structure in SVMIX, which makes the individual state-values
approximated by PPO agents more precise and decreases the
difficulty of the approximation of the total value function for
VMIX.

D. Value Decomposition With VMIX

Similar to the mixing network in QMIX [17], the VMIX
network shown in Fig. 6 leverages the filtered signals fromSGNN
and further evaluates the contribution of each agent to generate
the total state-value Vtot(ot) on the basis of the global state
st. VMIX consists of multiple MLPs which take st as input and
output the weights and biases for linear transformations. Finally,
the aggregated state-value can be formulated as

Vtot(ot) = w�2 V
′
agg (ot) + b2, (16)
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where V ′agg(ot) = f(W 1V agg(ot) + b1). Besides, W 1 ∈
R

C×N , b1 ∈ R
C , w2 ∈ R

C , b2 ∈ R are the generated hyperpa-
rameters indicating non-negative weights and biases from MLPs
taking st as input while the superscript � means the transpose.
Besides, f(·) denotes the nonlinear ELU function and enables
VMIX to produce a nonlinear total value function Vtot(·).

Thus via VMIX, the aggregated individual state-values
V agg(ot) with captured topological features from SGNN are
further integrated into the total state-value Vtot(ot) via non-
linear transformation, where the weights and biases learn the
contribution of each agent under the guidance of the global
state st. Conversely, V (i)(o

(i)
t ) is decomposed from Vtot(ot)

via V agg(ot). Consequently, through gradient descent and back
propagation, the parameters of each critic will be updated and
thus an appropriate individual state-value functions V (i)(·) will
be learned.

E. The Training of SVMIX

The SVMIX network aims to learn a joint policy
π(·|ot; θ) =

∏N
i=1 π

(i)(·|o(i)t ; θ(i)) (i.e., the normal distribution

N (μi(o
(i)
t ), σ2

i (o
(i)
t )) for i = 1, . . . , N ) and a total state-value

function Vtot(·;φ, η, ω) based on decentralized critics, where
θ = 〈θ(1), . . . , θ(N)〉 andφ = 〈φ(1), . . . , φ(N)〉 are the learnable
parameters of actors and critics respectively. Besides, η and ω
indicate the parameters of SGNN and VMIX, respectively. Ac-
cording to π(·|ot; θ), the joint actionat is adopted. In particular,
at indicates the taken actions of vehicles at t while π(at|ot; θ)
and Vtot(ot;φ, η, ω) participates in the calculation of loss func-
tions along with the global reward rt. Inspired by [26], the loss
functions are defined as

Lclip(θ)=−Et[min(ρt;θAt;φ,η,ω, clip(ρt;θ, ε)At;φ,η,ω)] , (17)

Lvf(φ, η, ω) =
1
2
A2

t;φ,η,ω, (18)

where

ρt;θ =
π(at|ot; θ)

π(at|ot; θold)
(19)

and

At;φ,η,ω =

T∑
k=t

γk−trk − Vtot(ot;φ, η, ω). (20)

Here T is the length of the episode, the clip function clip(·)
removes the incentive for moving the ratio ρt outside of the in-
terval [1− ε, 1 + ε] and At is the advantage value that evaluates
the current policy in the form of Monte-Carlo error. Notably,
for training with batches that include time-related samples, (20)
will further be slightly modified as

Aj;φ,η,ω =

|B|∑
k=j

γk−jrk + γ|B|+1−jVtot(o|B|+1;φ, η, ω)

− Vtot(oj ;φ, η, ω), (21)

where |B| is the batch size and j ∈ {1, . . . , |B|} is the index of
samples. If the episode ends, (21) will degenerate into the form

Algorithm 1: The Training of SVMIX Algorithm.

1: Initialize the underlying graph G+ = {V, E+}, the
number of agents N , the batch size |B|, the length of
an episode T , the number of PPO epochs Nepoch,
discount factor γ and constant ε;

2: Initialize the actor and critic networks in PPO agents,
the SGNN network and the VMIX network with
random parameters θ, φ, η and ω respectively;

3: Initialize the batch B ← ∅ and the batch sample
counter as counter← 0;

4: for every episode do
5: Initialize the ending flag of the episode as

done← 0;
6: for t← 1 to T do
7: Obtain the global state st and the joint observation

ot = {o(1)
t , . . . , o

(N)
t } from the environment;

8: Each agent generates the mean μi(o
(i)
t ; θ(i)) and

the standard deviation σi(o
(i)
t ; θ(i)) of the normal

distribution N (μi(o
(i)
t ; θ(i)), σ2

i (o
(i)
t ; θ(i)));

9: Each agent chooses the sampled action
a
(i)
t ∼ N (μi(o

(i)
t ; θ(i)), σ2

i (o
(i)
t ; θ(i)));

10: Obtain the reward rt, st+1 and ot+1;
11: Store the tuple 〈st,ot,at, rt, st+1,ot+1〉 in B in

order of time and set counter← counter+ 1;
12: if t = T then
13: done← 1;
14: end if
15: if counter = |B| or done = 1 then
16: Clone θold ← θ;
17: for nepoch ← 1 to Nepoch do
18: for samples in B do
19: Obtain π(aj |oj ; θ) and π(aj |oj ; θold)

corresponding to the distributions generated
from actors and calculate ρj;θ by (19);

20: Obtain the approximated total state-value
Vtot(oj ;φ, η, ω) through critics, SGNN and
VMIX sequentially in (9)–(16);

21: Calculate Aj;φ,η,ω ←
∑|B|

k=j γ
k−jrk + (1−

done) ∗ γ|B|+1−jVtot(o|B|+1;φ, η, ω)−
Vtot(oj ;φ, η, ω);

22: end for
23: Update θ and φ, η, ω according to (17) and

(18) separately via batch gradient descent;
24: end for
25: Initialize B ← ∅ and counter← 0;
26: end if
27: end for
28: end for

of (20) as the approximation of subsequent rewards is no longer
needed. Finally, θ and φ, η, ω will be updated through gradient
descent to minimize (17) and (18) separately.

Substantially, SVMIX decomposes V (i)(o
(i)
t ) from Vtot(ot)

through gradient descent on the minimization of (18) via SGNN
and VMIX. In particular, with the aid of SGNN, a feasible
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Fig. 7. Two scenarios for simulations. Here the red vehicles are the DRL-
driven vehicles, the blue vehicles are the manned vehicles observed by the DRL-
driven vehicles while the white vehicles are the manned vehicles which are not
observed in the state space. (a) “Figure Eight”. (b) “Merge”.

mapping from V (ot) to V
(i)

agg (ot), which takes the dynamics
of topology and the influence from other agents into account, is
learned to deal with the credit assignment issue first. Afterwards,
a satisfied joint policy will be learned according to (17). Addi-
tionally, the RES model in SGNN enhances the anti-disturbance
ability of SVMIX and the exploration ability by capturing the
dynamic topological features of Gt given the learned H and
certain p. In other words, for all possible inputs V (ot) related
to a specific topological connection,SGNN helps to finally get the
corresponding state-value V (i)(o

(i)
t ) for each agent and handles

topological dynamics based on RES. To sum up, we describe
the training procedure of SVMIX algorithm in Algorithm 1.

V. EXPERIMENTAL SETTINGS AND NUMERICAL RESULTS

In this section, we try to verify the performance of SVMIX
in autonomous vehicle control and demonstrate the advantage
of our proposed algorithm over other MARL methods. We
implement two simulation scenarios on Flow [45], [46], which is
a traffic control benchmarking framework for mixed autonomy
traffic. As illustrated in Fig. 7, the “Figure Eight” scenario and
the “Merge” scenario are chosen as two typical cases to evaluate
the performance of our method.

A. The Settings for “figure Eight” and Simulation Results

The “Figure Eight” scenario in Fig. 7(a) consists of fixed
M = 14 (i.e., Mt = 14 for any t) vehicles running circularly
along a one-way lane with an intersection. So the vehicle must
strive for a velocity close to its desired velocity, and timely
adjust the velocity when passing through the intersection so as to
avoid collisions. What’s more, we deploy 7 manned vehicles and
N = 7 DRL-driven vehicles alternately, where the former vehi-
cles are controlled by Intelligent Driver Model (IDM) defined
in [8] while the latter ones are controlled by MARL methods.
Notably, all the vehicles will perform emergency braking if they
are about to crash, and once a collision occurs the episode will
be terminated immediately. The corresponding MDP for DRL
agents in “Figure Eight” is defined as below.
� State and Observation: Here the state contains the

information of all the vehicles. Besides, each DRL-
driven vehicle can only observe the information of

TABLE II
KEY PARAMETER SETTINGS FOR “FIGURE EIGHT” AND THE ALGORITHMS

the vehicles ahead and behind. Therefore we have
st = {v(1)

t , z
(1)
t , v

(2)
t , z

(2)
t , . . . , v

(M)
t , z

(M)
t } and o

(i)
t =

{v(iahead,t)
t , z

(iahead,t)
t , v

(i)
t , z

(i)
t , v

(ibehind,t)
t , z

(ibehind,t)
t } as

the observation of DRL-driven vehicle i, where iahead,t
and ibehind,t are the preceding and following vehicles of
vehicle i at time-step t, respectively.

� Action: As each DRL-driven vehicle only needs to
consider the acceleration (i.e. a(i) = u(i)), at = {u(1),
u(2), . . . , u(N)}.

� Reward: The reward function is the same as (4) where
α = 0 so the penalty term is ignored.

In our setting, the number of episodes Nepisode is 300, while
each episode has a maximum of L = 1500 iterations in the case
of no collision. Also, we design the utility U = 1

L

∑T
t=1 rt as

a concrete form of (5) as the evaluation metrics. For SVMIX,
we use the same architecture as depicted in Fig. 2 with F = 32,
K = 3 and p = 0.7 for SGNN. Besides, we compare the per-
formance of SVMIX with other MARL methods, including
Federated Independent Reinforcement Learning (FIRL) [27],
QMIX [17] and Multi-Graph Attention Network (MGAN) [20],
where FIRL combines federated learning with a consensus
algorithm based on multiple PPO agents, and MGAN adhibits
Graph AttenTion network (GAT) into VD-based MARL archi-
tecture. Both MGAN and SVMIX are contingent on a complete
graph for inter-agent communication, while FIRL concentrates
on a specified graph for consensus. Especially, FIRL uploads
the gradient of each agent to a centralized virtual agent every
τ updates. Besides, an optimal baseline is rendered by Flow
where all the 14 vehicles are controlled by IDM, as it is a typical
car-following model that contains lots of prior knowledge. It’s
worth noting that all the methods deal with a global reward, while
each agent in FIRL uses the local reward identical to the global
reward. Typical parameter settings are summarized in Table II.
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Fig. 8. Average utility of different methods under the scenario “Figure Eight”
under a desired velocity vd = 10 m/s. Obviously, all methods converge within
about 100 episodes, andSVMIX converges the fastest. For VD-based algorithms,
the curves of QMIX and MGAN fluctuate violently and demonstrate least instabil-
ity. For example, the higher average utility ofMGAN comes at the cost of stability.
However, SVMIX converges faster than the aforementioned methods as well as
maintains a stable and satisfactory utility. FIRL learns a stable policy similar
to SVMIX but converges more slowly. On the whole, SVMIX outstrips the other
methods in terms of the convergence rate and stability with a higher utility.

Fig. 9. Average utility curve of SVMIX under the scenario “Figure Eight”
(a) under a desired velocity vd = 10 m/s; (b) under a desired velocity vd =
20 m/s. (a) vd = 10m/s. (b) vd = 20m/s.

Fig. 8 compares the average utility of different MARL meth-
ods and the optimal baseline in 3 independent simulations, while
Fig. 9(a) further presents the learning curve of SVMIX in detail.
In particular, the utility is computed by averaging the results of
another five testing episodes after every 10 training episodes in a
simulation, when each agent directly takes the mean μi(o

(i)
t ) as

a deterministic action. It can be observed from Fig. 8 that both
QMIX and MGAN converge with about 100 episodes of training
since VD learns different contributions of agents with precise
total value function and individual value functions. Compared
to QMIX, MGAN converges faster and has a slightly higher
average utility thanks to the captured topological features by
GAT. But unfortunately, this also makes MGAN susceptible to
the dynamics of graphs and more unstable. It can be observed
from Table III that the fluctuation of utility in MGAN is mostly
caused by the occurrence of collisions due to over-accelerated
vehicles. In other words, QMIX and MGAN learn over-aggressive
policies. Comparatively, benefiting from the stochastic graph
filters with enhanced capability to capture dynamic topological
features, SVMIX outperforms the two VD-based algorithms
as it converges faster while learns a safer joint policy with
significantly less fluctuations, as well as maintains a high utility.

TABLE III
PROBABILITY OF COLLISIONS FOR MARL METHODS AFTER CONVERGENCE

UNDER THE SCENARIO “FIGURE EIGHT”

TABLE IV
AVERAGE COMMUNICATION OVERHEADS OF FIRL AND SVMIX

On the other hand, benefitting from the aggregation of gradient
through federated learning and communication among agents,
FIRL learns a stable policy similar to SVMIX but converges
more slowly.

Moreover, as depicted in Table IV, which compares SVMIX
and FIRL in terms of the uplink communication overhead1 (i.e.,
the amount of data) required for training with |B| samples in the
batch, SVMIX reduces 12.13% of the communication overheads
compared to FIRL as the communication overheads of FIRL
are proportional to the number of parameters (i.e., Npara) while
those of SVMIX are proportional to the size of a batch (i.e.,
|B|) and the number of PPO epochs (i.e., Nepoch). In other
words, SVMIX only needs to transmit a batch of state-values
rather than the gradients of all parameters. Hence, compared
to FIRL, SVMIX better balances the learning performance and
communication overheads.

Furthermore, we additionally test the MARL algorithms
in the “Figure Eight” scenario with modified configurations,
wherein the range of acceleration for each vehicle is expanded
to [−3 m/s2, 3 m/s2] and the desired speed is raised to 20 m/s
(a larger yet more dangerous velocity), while the other settings
remain the same as those in Table II. Intuitively, this modified
scenario with a lager desired velocity implies an increased
probability of collisions, consistent with the observations in
Table III. Fig. 10 compares the average utilities of different
MARL methods with the optimal baseline in 6 independent
simulations respectively, while the learning curve of SVMIX
is depicted in Fig. 9(b). It can be observed from Fig. 10 that
FIRL yields less utility with the relatively stable performance
and lower collision probability, while QMIX achieves a higher
utility than FIRL but fluctuates drastically due to the frequent
occurrence of collisions. MGAN further improves the conver-
gence rate but still suffers from fluctuations. Instead,SVMIX still
maintains good performance with a fast convergence rate and a
small training variance, as well as the lower collision probability
compared with QMIX and MGAN.

1Notably, the VD-based methods have almost the same communication
overheads.
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Fig. 10. Average utility of different methods under the scenario “Figure Eight”
under a desired velocity vd = 20 m/s. Obviously all the methods converge
within about 150 episodes, where FIRL learns a stable policy at the cost of the
convergence rate and utility. QMIX achieves a higher utility than FIRL thanks to
VD and MGAN further improves the convergence rate and reduces the fluctuation
due to the incorporation of GAT. SVMIX has the similar performance to MGAN,
but gives lower collision probability as in Table III.

B. The Settings for “merge” and Simulation Results

As depicted in Fig. 7(b), the “Merge” scenario simulates the
on-ramp merging on the highway. Similar to “Figure Eight”, it’s
essential for vehicles to consider how to avoid collisions and
congestion due to the meeting at the merging point. As “Merge”
is an unclosed network, there assumes to exist a traffic flow
where the vehicles frequently flow in and out, leading to the
variations in the number of vehicles. Following the definition
of the model in Section III, the scenario is set to allow at most
2,100 vehicles to flow in per hour, including 2,000 vehicles at
most on the trunk road and 100 vehicles at most on the ramp per
hour. In particular, among the 2,000 vehicles, 25% of them will
be assigned as DRL-driven vehicles. Consistent with the MDP
defined in Section III, we consider an MDP as follows.
� State and Observation: Here the state contains the

information of the observable vehicles (just like the red
and blue vehicles in Fig. 7(b)) instead of all the vehicles.
Also, each DRL-driven vehicle can only observe the
information of the preceding and following vehicles.
So st only consists of the positions and velocities of
DRL-driven vehicles as well as the vehicles ahead of
and behind them. Furthermore, we fix the number of
algorithmically involved DRL-driven vehicles as N = 13
and if the practical number of vehicles Nt > N , the other
Nt −N vehicles will be treated as manned vehicles;
otherwise, the state will be padded with zeros, as if there
are N DRL-driven vehicles. The dimension of the state
space consequently remain unchanged. Therefore the state
is represented by st = {o(1)

t , o
(2)
t , . . . , o

(N)
t } where o(i)t =

{v(iahead,t)
t , z

(iahead,t)
t , v

(i)
t , z

(i)
t , v

(ibehind,t)
t , z

(ibehind,t)
t }

expresses the observation of DRL-driven vehicle i where
i = 1, 2, . . . , N .

� Action: Same as the above, the N = 13 DRL-driven vehi-
cles will choose their actions according to their policies so
the dimension of the joint action space is also immutable

TABLE V
KEY PARAMETER SETTINGS FOR “MERGE” AND THE ALGORITHMS

and at = {u(1), u(2), . . . , u(N)}. When Nt > N , the first
N vehicles will be treated as DRL-driven vehicles and the
others are regarded as manned vehicles. In case Nt < N ,
the extra actions will be ignored during the interaction with
the environment. It’s worth noting that the underlying graph
G+ is still a complete graph with fixed N vertices.

� Reward: The reward function is the same as (4) where
α = 0.1 and the penalty term is defined as

D(z(1), . . . ,z(Mt))=

Mt∑
j=1

max(C2−‖z(iahead,t)−z(i)‖2, 0),

(22)
where C2 is a constant which represents the desired fol-
lowing distance of each vehicle.

In our setting, the number of episodes Nepisode is 300, while
each episode has a maximum of L = 750 iterations in the case
of no collision. For SVMIX, we use the same architecture as in
Fig. 2 with F = 32, K = 3 and p = 0.7 for SGNN. Besides,
we compare the performance of SVMIX with FIRL, QMIX
and MGAN with the same detailed settings described earlier
in Section V-A. Typical parameter settings are summarized in
Table V.

Fig. 11 compares the average utility of different MARL
methods and the optimal baseline in 3 independent simulations
respectively, while the learning curve of SVMIX is depicted in
Fig. 12. Consistently, the utility is computed by averaging the
results of another five testing episodes after every 10 training
episodes in a simulation, when each agent directly takes the
mean μi(o

(i)
t ) as a deterministic action. It can be observed that

the performance of SVMIX obviously outperforms the other
algorithms in “Merge”, which verifies the aforementioned idea
that it’s necessary to deal with the dynamic topology for better
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Fig. 11. Average utility of different methods under the scenario “Merge”. All
the methods converge within about 100 episodes, and SVMIX converges the
fastest. FIRL still learns a stable policy and reaches a not bad average utility.
MGAN converges quickly but seems unstable in terms of the undulant and low
average utility. QMIX and SVMIX both hold a more stable performance, where
the average utility of SVMIX is slightly better than QMIX.

Fig. 12. Average utility curve of SVMIX under the scenario “Merge”.

performance of VD-based algorithms. In particular, compared
with FIRL, SVMIX has comparable average utilities and still
outperforms in terms of communication overheads. Moreover,
MGAN achieves an unstable and the worst performance as shown
in Fig. 11, and even worse than QMIX as well as FIRL. Es-
pecially at the last 150 episodes, MGAN fluctuates violently.
This is possibly because the DRL-driven vehicles are irregularly
allocated due to the traffic flow and it becomes a degenerative
feedback to the learning of attention coefficients.

C. Superiority of SVMIX

We also find some interesting properties ofSVMIXwhich have
shown the superiority of SGNN and generality of SVMIX based
on simulations in “Figure Eight” under the desired velocity of
10 m/s.

First, since SGNN simulates the dynamic graphs through
RES, we speculate that SVMIX can further reduce the uplink
communication overheads by uploading less data. Specifically,
at each time-step t, we can sample part of the agents to upload the
information (i.e., the state-value V (i)(o

(i)
t )) for VD, and denote

this procedure as SVMIXpart. In “Figure Eight”, we randomly
choose 5 agents to upload their state-values for VD while
leave the remaining 2 agents in silence. Fig. 13 provides the

Fig. 13. Average utility as well as cumulative communication overheads of
SVMIX and SVMIXpart under the scenario “Figure Eight” under a desired
velocity vd = 10 m/s.

Fig. 14. Average utility of SVMIX and SVMIXDDPG under the scenario
“Figure Eight” under a desired velocity vd = 10 m/s.

corresponding performance comparison between SVMIX and
SVMIXpart in 5 independent simulations. It can be observed that
SVMIXpart maintains almost the same performance as SVMIX.
More significantly, the communication overheads of SVMIXpart

account for 5
7 of those ofSVMIX, which are equivalent to 62.76%

of FIRL only.
We further evaluate the generality of SVMIX on top of other

RL algorithms, by replacing PPO with Deep Deterministic Pol-
icy Gradient (DDPG) [16] (denoted as SVMIXDDPG). Fig. 14
compares the average utility curves ofSVMIX andSVMIXDDPG

in 5 independent simulations. It can be observed that the exten-
sion of SGNN to DDPG is also applicable. However, compared to
SVMIX with PPO, SVMIXDDPG yields good performance with
a faster convergence rate but higher degree of instability (i.e.,
larger variance).

D. Hyperparameters Adjusting for SGNN in SVMIX

To clarify the influence of the hyperparameters in SGNN, we
further carry out supplementary experiments in “Figure Eight”
under a desired velocity of 20 m/s by changing one hyperpa-
rameter and keeping the others the identical. Fig. 15 provides the
corresponding results where we get the results from the testing
episodes after 100, 110, . . . , 200 training episodes (i.e., when
SVMIX converges slowly) respectively through 5 independent
simulations.
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Fig. 15. Boxplots of the average utility of SVMIX with different structure of SGNN under the corresponding hyperparameters by changing (a) the sampling
probability p, (b) the order of each filter K and (c) the number of filters F from the testing episodes after 100, 110, . . . , 200 training episodes through 5 independent
simulations. (a) Probability p. (b) Order of the filter K. (c) Number of filters F .

1) Probability p: As shown in Fig. 15(a), keeping K =
3 and F = 32, we evaluate the performance of SVMIX for
p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. For a Bernoulli-sampled RES, the
variance of the outputs from SGNN is proportional to p(1− p)
and will be maximized when p = 0.5. Obviously, the result
of p = 0.5 is the most unstable as there are many outliers.
The settings of p = 0.3 and p = 0.7 yield the similar stable
performance, while the performance of p = 0.1 and p = 0.9
seem more unstable. This is because when p = 0.1 and p = 0.9,
SGNN is unable to make sufficient exploration due to the too
small or too large probability p based on RES. Thus a probability
like p = 0.7 sounds more appropriate for SGNN.

2) Order of the filter K: Fig. 15(b) demonstrates the influence
of the filter order K by retaining p = 0.7 and F = 32 with K
spanning from 2 to 6. Consistent with the analysis in [25], which
states that the variance of the outputs from SGNN is proportional
toK, the variance of the utility also becomes greater asK grows.
Thus an order like K = 2 or K = 3 will be suitable for “Figure
Eight”.

3) Number of filters F : Fig. 15(c) demonstrates the influence
of the number of filters F by retaining p = 0.7 and K = 3 with
F ∈ {16, 32, 48, 64, 80}. For F = 16, the capability of SGNN
for feature extraction decreases and thus leads to an unstable
performance. As F increases, SVMIX generally gives better
performance, though it slightly suffers from the deficiency of
training samples to train a larger neural network.

VI. CONCLUSION AND DISCUSSION

This article aims to address credit assignment problem in a
dynamic environment by value decomposition and tentatively
puts forward anSGNN based multi-agent actor-critic architecture
called SVMIX with PPO agent as the individual agent. In partic-
ular, SGNN, which consists of parallel stochastic graph filters,
has been leveraged to enhance the resilience to the environment
volatility and thus capably capture dynamic underlying features
in a more effective manner. To demonstrate the feasibility of
SVMIX, we further explain why SGNN works by clarifying the
influence ofSGNNon exploring the comprehensive optimal map-
ping from individual state-values to the total state-value through
theoretical analysis. Moreover, through extensive simulations in
two different scenarios, SVMIX manifests itself with a superior

capability in terms of the more balanced performance in terms
of the convergence rate, the mean & the variance of the average
utility and communication overheads.

However, the assumption that each agent can only make
decisions based on the observation of itself might be over-
emphasized as the communication between neighboring agents
is allowed in practical scenarios in the decentralized execu-
tion. Therefore, it is worthwhile to incorporate the inter-agent
communication more comprehensively. Meanwhile, a careful
calibrated reward reshaping method, which takes account of
desired velocity and collusion penalty, is meaningful as well.
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