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AoI-based Temporal Attention Graph Neural
Network for Popularity Prediction and Content

Caching
Jianhang Zhu, Rongpeng Li, Guoru Ding, Chan Wang, Jianjun Wu, Zhifeng Zhao, and Honggang Zhang

Abstract—Along with the fast development of network tech-
nology and the rapid growth of network equipment, the data
throughput is sharply increasing. To handle the problem of
backhaul bottleneck in cellular network and satisfy people’s
requirements about latency, the network architecture, like the
information-centric network (ICN) intends to proactively keep
limited popular content at the edge of network based on predicted
results. Meanwhile, the interactions between the content (e.g.,
deep neural network models, Wikipedia-alike knowledge base)
and users could be regarded as a dynamic bipartite graph.
In this paper, to maximize the cache hit rate, we leverage
an effective dynamic graph neural network (DGNN) to jointly
learn the structural and temporal patterns embedded in the
bipartite graph. Furthermore, in order to have deeper insights
into the dynamics within the evolving graph, we propose an
age of information (AoI) based attention mechanism to extract
valuable historical information while avoiding the problem of
message staleness. Combining this aforementioned prediction
model, we also develop a cache selection algorithm to make
caching decisions in accordance with the prediction results.
Extensive results demonstrate that our model can obtain a higher
prediction accuracy than other state-of-the-art schemes in two
real-world datasets. The results of hit rate further verify the
superiority of the caching policy based on our proposed model
over other traditional ways.

Index Terms—Content caching, popularity prediction, dynamic
graph neural network, age of information.

I. INTRODUCTION

G IVEN the galloping number of users and mobile equip-
ment [1], the amount of data sharply surges and the

wireless access points at the network edge confront frequent
congestion. Generally, besides video streaming, provisioning
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Fig. 1. Mobile edge caching in ICN.

artificial intelligence (AI) and other dedicated network func-
tions services are becoming the dominant factors that steer this
explosion. Therefore, how to bring a better quality of user
experiences (QoE) and quality of service (QoS) to users in
the sharply growing data traffic under a constrained backhaul
link is an intractable problem we have to face. Some resource-
devouring approaches, such as higher frequency reuse, a larger
scale of antennas or setting more bandwidth, can tackle this
problem by increasing the capacity of cellular networks, but
most of them fail to offer a durable solution in terms of
scalability, costs and flexibility [2]. On the other hand, some
studies [3], [4] point out that a tremendous data load comes
from the repeated requests for a few same popular targets,
especially the multimedia services at the edge, so does the sce-
nario of AI service, in which the same AI samples or trained
models may devote to numerous applications [5]. Therefore,
aiming at dealing with these repetitive actions, some studies
propose to store part of fashionable content (e.g., deep neural
network models, videos) at the network edge, which can
obviously alleviate the backhaul traffic burden caused by the
data explosion and greatly reduce the transmission delay or
other issues [6]. So there is a growing consensus that edge
caching will play a prominent role in future communication
systems and networks [7].

The demands for a more efficient and much simpler content
distribution method have motivated the emergence of a new
architecture called information-centric network (ICN) [8]. In
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Fig. 2. An example of time sampling and event sampling to dynamic graph, in which the sampling period of time sampling is T and three events occurred
at T1, T2 and T3, and 2T < T1 < 3T , 6T < T2 < 7T and 8T < T3 < 9T .

contrast to the inefficient way like IP addressing, clients
in ICN are able to directly access content pieces from the
network only by its unique named data objects (NDO) [9]. As
illustrated in Fig. 1, ICN can easily satisfy requests by any
edge node if the node holds a copy with the exact NDO in its
in-network storage [10]. Practically, due to the limited cache
space [11], we are only able to recommend those content with
distinguished cost performance to ICN’s in-network storage.
Ideally, we should proactively cache the most popular content.
Most of the existing caching strategies always assume that
the content popularity remains stable during a long period,
while it actually varies over time [12]. For example, some
traditional caching strategies like Least Recently Used (LRU)
and Least Frequently Used (LFU) [13] are partial to extracting
the superficial periodic law from historical information, and
ignore the dynamic characteristics of requests themselves [14].
To enhance the caching performance, it becomes an incentive
to lucubrate the dynamics to establish a popularity prediction
model.

In addition to the dynamics of historical requests, we also
believe a well-adopted popularity prediction model ought to
predict from users’ perspectives and excavate the structural
pattern within data as well. In other words, it is inspiring to
exploit the implications from users with similar preferences
when speculating some inactive entities’ predilections for com-
prehensive popularity anticipation. Recently, some researchers
regard user-content pairs in recommendation system (RS) as
a bipartite graph [15] and propose to utilize graph neural
network (GNN), such as Graph Attention Network (GAT)
[16], to dig out structured data. They demonstrate that even
without dynamic information, GNN model also wins excellent
performance in RS [17]. Inspired by these works [15]–[17],
interactions between the content and users could also be
regarded as a bipartite graph when we attempt to predict their
popularity in ICN. However, it is also non-negligible that most
real-life graphs are always evolving, and the ignorance of time-
varying nature of the aforementioned approaches makes them
still far from perfection [18].

In order to realize the learning of structure and dynamics
simultaneously, the dynamic graph neural network (DGNN)
has been proposed. As shown in Fig. 2, there are mainly

two kinds of DGNN models (i.e., time sampling and event
sampling). DGNN with time sampling obtains a series of sub-
graphs by discrete sampling with time interval T . So the
sampling period’s granularity T is vital to the final results.
If the time window is too tiny, as shown at the top of Fig.
2, it yields many snapshots without any new information
and brings more redundancy to computation. To avoid this
issue, DGNN with event sampling further tries to finish the
building of dynamic graph from the insight of continuity by
sampling at occurrence of events and recording the corre-
sponding timestamps, as exemplified at the bottom of Fig.
2. But the efficacy of existing approaches still remains room
to improve. In this article, we primarily leverage a modified
continuous DGNN (CDGNN) model to learn the structural
and temporal pattern in the dynamic bipartite graph of users
and requested content. Specifically, we focus on discovering
how to abstract temporal features and how many historical
messages we should utilize while mining the dynamic features.
To solve the above issues, we introduce age of information
(AoI), a metric quantifying the freshness of data [19], to guide
the selection of fresh information and a multi-head attention
mechanism is employed to refine temporal characteristics.
Both of them contribute to the generation of more precise
representations for users’ preference predictions. Afterwards,
a strategy, which relies on the results of CDGNN, is proposed
to guide the caching. Overall, the main contributions of this
paper are as follows:

• To forecast users’ preferences precisely, a CDGNN model
is used to simultaneously excavate the structural and
dynamic patterns of the bipartite graph for all users and
we also design a caching policy on top of the CDGNN
model.

• We develop an AoI-based temporal attention graph neural
network (ATAGNN) method by innovatively introducing
the AoI concept and incorporating the attention mecha-
nism on top of the GNN model to effectively mine the
temporal features in the dynamic graph. The combination
of AoI and GNN may be of independent interest to the
GNN community.

• Extensive simulation results also manifest the prediction
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accuracy of our method and confirm the superiority over
other deep learning models. Meanwhile, we testify the
strategy relies on our ATAGNN model’s effectiveness
within different cache spaces, and updating periods. The
results of caching hit rate show our scheme significantly
surpasses the performance of traditional policies like LRU
and LFU.

The remainder of this paper is organized as follows: The
related work and background are introduced in Section II.
We present the system model in Section III. The details
of our proposed AoI-based temporal graph neural network
are delivered in Section IV. In Section V, we provide the
numerical analysis and the results of prediction. Finally, the
conclusion is summarized in Section VI. For convenience, we
also list the major notations of this paper in Table I.

II. RELATED WORK

Traditional caching policies, LRU and LFU, have obtained
motivating results. Furthermore, one of their variants [20]
proposes to combine age of information (AoI) with LRU to
achieve cooperative caching between several cache-enabled
edge servers, but due to the common limitation of LRU and
LFU, it still fails to mine the dynamics under the superficial
statistical law. To make a dynamic caching decision, utilizing
the content popularity as a reference is a commonly-adopted
way. Some innovative studies based on locally deployed popu-
larity prediction algorithms have thrived in recent years [21]–
[24]. In particular, with the development of AI algorithms,
deep learning plays a non-negligible role in the popularity
prediction and caching tasks. For instance, [12] uses a feed-
forward neural network (FNN) for estimating the caching
threshold to assist the caching decision. [25] proposes to
use a recurrent neural network (RNN) to recommend popular
content, but it is complicated to be generalized to a new
dataset that has not been trained because of the limitations
of RNN. What’s worse, both of them fail to exploit the
interdependency among all users or the structural pattern of
data. In recent years, due to the excellent performance of
extracting the structural pattern of a graph, some studies have
succeeded in using graph neural network (GNN) to realize
the popularity recommendation by regarding users and their
requested items as the components of a bipartite graph [26].
In that regard, GAT is verified to effectively learn the structure-
rich representations by aggregating interrelated vertexes in the
recommendation graph with weights calculated by attention
mechanism [27].

Although GNN, GAT and their variants have yielded ex-
cellent performance in representation learning and won re-
markable achievements in recommendation tasks, they neglect
the impact of dynamic features and still have room to im-
prove. Therefore, GNN models with dynamics learning have
been proposed to bridge the gap. For example, DySAT [28]
and most DGNN models at the early stage achieve their
dynamics extraction by sampling series snapshots from the
evolving graph with equal time intervals. But the choice of
sample granularity is a prominent part of model designing, for
which an inappropriate granularity may result in the failure

TABLE I
A SUMMARY OF MAJOR NOTATIONS USED IN THIS PAPER.

Notation Definition

uj , ik
The notations of user j and content k, for j ∈ [0, J ] and k ∈ [0,K];
J is the max number of users, K is the max number of content.

vuj , vik , ejk The features of user j, content k and their edge.
δp The updating period of content.

pkj (δp)
The actual possibility of content k requested by user j during the
content updating period δp.

p̃kj (δp)
The possibility of content k requested by user j during the content
updating period δp that is calculated by our model.

Ak(δp)
The total request behaviors about content k for all users during the
updating period δp.

Ãk(δp)
The total request behaviors about content k for all users during the
updating period δp that we predict.

PI The threshold value for determining whether a request will occur or not.
C(δp) The set of top-C content that we predict to be cached.

F(·) A multi-layer perceptron that is used to calculate the preference
between users and content.

∆jk(t, n) The age of user j’s n-th information.

∆Tp

The difference between the target timestamp Tp to predict and the
most recent timestamp Tl of a request in history

Tu The period that we adopt to update memory.

of yielding a snapshot with a new effective graph structure
[29]. To avoid this obstacle, some continuous dynamic graph
models (CDGNN), e.g., DyRep [30], propose to complete the
graph computation with event sampling. Specifically, DyRep
expresses a dynamic graph as the evolution of structural and
node communication with a recurrent architecture. Moreover,
some researchers inspired by the position encoding in Trans-
former [31] try to inject some information about interaction
timestamps into the node. For instance, TGAT [18] uses the
harmonic processing method to obtain a time coding function.
Furthermore, TGN [32] intends to refine the temporal signals
of historical interactions by adding a memory module to the
TGAT and achieves superior performance in the above DGNN
models. To some extent, the improvement stems from the
extraction of users’ short-term and long-term preferences with
the memory module. However, during aggregating history,
TGN, which calculates the mean value or keeps the latest
records in its memory module, is relatively preliminary. A
further refinement of short-term history is necessary.

As described, aforementioned models like TGN are becom-
ing an important tool to realize the proactive caching, but still
leave questioned on how to design a much more effective
information aggregation method in CDGNN. Therefore, we
introduce an attention mechanism to the TGN model so as to
capture both structural and dynamic patterns. And inspired by
the AoI in wireless sensor network (WSN) [19], a metric of
information freshness to balance the huge data and the limited
transmission capacity, we novelly introduce the concept into
our neural network for selecting fresh messages adaptively.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

1) Content Caching Model: In this paper, we consider
a network that contains some edge servers that provide in-
network storage, e.g., the base stations (BSs). In each edge
server, there are multiple users in its coverage area and these
clients always request content aperiodically. To realize the goal
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of caching, we compute content popularity for the users within
the edge server and download the most popular ones. The main
purpose of our paper is to obtain a better hit rate with a well-
performed popularity prediction model.

For such a user-content system with J users and K contents,
the set of users can be indicated by U = {u0, u1, ..., uJ}
and the set of available contents in the network are identified
as I = {i0, i1, ..., iK}. For all the entities, we define their
necessary raw information (e.g., the age of a user or the
category of content) as the features: VU = {vu0

, vu1
, ..., vuJ

}
and VI = {vi0 , vi1 , ..., viK}. vuj

and vik , where j ∈ [0, J ] and
k ∈ [0,K], denote the original features of user j and content
k, respectively.

To accomplish the selection of future popular content, we
define the possibility of content k requested by user j during
the content updating period δP as pkj (δp). In this paper, we
adopt DGNN model to calculate the possibility, as p̃kj (δp).
Generally, since users at different time have different pref-
erences towards the same content, there emerges an implicit
evolving relationship between users and the requested content.
To finish the task of caching, we need an action indicator
function to indicate whether an item will be requested or
not. The total request behaviors about content k for all users
U within the edge server during the updating period can be
formed as:

Ak(δp, p
k
j ) =

∑
j∈U

1(pkj (δp) > PI), ∀k ∈ I, (1)

where PI is the threshold value for requesting and any poten-
tial interaction with a possibility that is larger than PI will be
regarded as the possible request and recorded with the function
1(·). Moreover, we define the predicted request actions toward
content k during the updating period as Ãk(δp, p̃

k).
Due to the limited storage space, we denote the maximum

number of the edge server’s capability as C ≥ 0. After
predicting and counting users’ possible actions, we then make
a popularity ranking list for content in I and rely on the set
of top-C items C(δp) to update the cache space. Given the
cached set C(δp), the hit rate of our scheme during the content
updating period δp can be denoted as h(δp), can be calculated
as:

h(δp) =

∑
k∈C(δp) Ã

k(δp, p̃
k
j )∑

k′∈I A
k′(δp, pkj )

. (2)

2) Dynamic Graph Model: Note that the choice of C(δp) is
the important part for the increase of caching hit rate, and it has
a positive relationship with the possibility of request behavior
that we need to estimate. Undoubtedly, an accurate prediction
towards popularity is the key part of a caching strategy, but
users and their interests are often subject to change over time,
which increases its difficulty. To proactively cache content in
advance, we can forecast the popularity based on the historical
request information. Considering the existence of inactive
users, it will be much more effective to learn from users’
structural patterns. Thus, we can utilize the technique of GNN
and view the whole system as an evolving graph.

We reformulate the aforementioned sets as the components
of a bipartite graph G, where users and content can be regarded

as vertexes of the dynamic graph, and the interactions are
naturally identified as the bipartite graph’s evolving edges,
E = {e01, e21, e03, ..., ejk}, where ejk represents the vector
of interaction between user j and content k. As time goes by,
correspondingly, new edges, as well as their participants, are
added into the dynamic graph, as shown in the bottom of Fig.
2. For the sake of simplicity, we don’t consider the choice
between multiple content providers for the same content, and
we also assume that all the different files have an equal size.

Furthermore, the occurrence of new requests can be deemed
as the generation of edges, and for a dynamic graph, its
timestamp should also be simultaneously recorded: G =
{(R01, T1), (R21, T2), (R03, T3), ..., (Rjk, TN )}, where TN de-
notes the occurrence timestamp of the edge, and Rjk =
{vuj

, vik , ejk}. We use Infjk = f(vuj
, vik , ejk) ∈ Rd to

demonstrate an interaction event, where f(·) is the concate-
nation function, to denote the message between user j and
content k. Similarly, the initial embedding of a message
from the perspective of content k is presented as Infkj =
f(vik , vuj

, ejk). For node uj at time t, we denote the set
of its request targets as: N (vuj

; t) = {vi0 , vi1 , ..., viM }.
Subsequently, a DGNN model can be employed to generate
representations containing structural and dynamic patterns for
further computation. Moreover, since the interactions we cope
with are instantaneous, so we ignore the lasting time of an
interaction and only focus on the occurrence of the request.

B. Temporal Graph Network Model for Popularity Prediction
We discuss how to predict the popularity after formulating

the interaction between users and the requested content as a
dynamic bipartite graph. Since the graph is not static, we refer
to the temporal graph network [32] for discovering its under-
lying temporal relationship concurrently. The components of
this model are defined as follows:
• The time-coding module, which is proposed in [18], is

used to encode the timestamp of a request’s built-up time.
However, the interval between the latest request and the
target one is much more meaningful than the absolute
time points, so we use the difference ∆t instead. To some
extent, it achieves a preliminary extraction of temporal in-
formation. Consistent with TGAT, the function is defined
as:

ΦdT (∆t) =

√
1

dT
[cos(ω1∆t), cos(ω2∆t), ..., cos(ωd∆t)]

T

(3)
where ΦdT (∆t) ∈ RdT , ω1, ω2, ..., ωd are the parameters
to be trained and dT is the dimension number of the time
embedding we want.

• The time-concatenating module combines the initial mes-
sage embedding Infjk between users and content with
the encoded time feature as the intact representation of
an interaction, and the set of user j’s all interactions is
described as:

Msgj(t) = [Infj0||ΦdT (0), ..., Infjk||ΦdT (∆tN )]T (4)

where the operator || denotes a concatenation operation
and Msgj(t) ∈ RN×(d+dT ) is the final input feature to
the DGNN model.
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• Inspired by TGN [32], a memory embedding module is
also adopted to reinforce the dynamics refinement, i.e.,
the extraction of short-term and long-term interests of
users. It aggregates the historical interactions stored in
the message buffer to obtain an embedding with richer
temporal information about short-term preference. Sub-
sequently, it updates former memory with the embedding
to inherit and renew the long-term one. Considering
that the aggregation methods in TGN are elementary for
extracting short-term temporal characteristic, we further
propose to adopt an AoI-based attention mechanism for
utilizing raw request information and we will talk about
it later.

• Finally, an embedding module is adopted to extract the
structural pattern within the graph and merge the time
feature that we want to predict for further computation.
The embedding module outputs the final representations,
which contain both temporal and structural characteristics
for all vertexes in the dynamic bipartite graph. Specifi-
cally, the final representation of user j and content k
are denoted as Euj and Eik. Based on these embedding
representations, we can predict the preference of user j
for content k as

p̃kj (δp) = F (Euj ,E
i
k) (5)

where a multi-layer perceptron (MLP) is a good choice to
achieve the function F (·). Besides, we extract the same
number of negative samples to speed up the training.
Finally, we use a binary cross entropy (BCE) loss function
for optimizing the whole neural network:

L =
1

n

∑
γ

−(yγ log(p̃γ) + (1− yγ) log(1− p̃γ)) (6)

where yγ is the label of the γ-th samples, yγ = 1 if
the γ-th is a positive sample and yγ = 0 for negative
samples. p̃γ = p̃kj is prediction result of the γ-th samples
calculated by Eq. (5).

After estimating the user preference p̃kj , we can derive the
request behaviors Ãk(δp, p̃

k
j ) and the caching policy from

Algorithm 1 and Algorithm 2.

IV. AOI-BASED TEMPORAL GRAPH NEURAL NETWORK

Although the future requests of a user are diverse, com-
paratively accurate predictions can still be speculated by
aggregating and analyzing existing history information. To
some extent, aggregating history information can extract the
short-term interests of users. But as described above, the ways
of aggregation in TGN are still far from perfection: 1) the
method of always keeping the latest request may not have
much negative impact on the trained nodes, but it may lead to
some errors when a rookie node joins into the graph due to
the lack of historical references. 2) the method of averaging
ignores the fact that requests at different time have distinct
influences on future behavior, and some are so obsolete that
they may bring adverse effects. Thus, we propose an AoI-
based attention mechanism to ameliorate the model.

A. Attention Mechanism for Temporal Pattern Extraction

As demonstrated in TGN, the more recent and repeated
actions usually have greater impacts on the future interests
prediction, we can calculate the degrees of correlation between
previous interactions and the latest one with a self-attention
mechanism [31], which are used as the indications of influence
later. Hence, we name this model TGN-A for short. Notably,
the weighted summation of all the chosen messages is the
aggregated feature to update the memory, as shown in Fig. 3.
The aggregated message of user j is calculated as follows:

hj(t) = ATT (Msgj(t), [Msgj(t)]0)

= σ(
∑
m∈N

αjmVjm) ∈ Rdh (7)

where Vjm = [Msgj(t)]mWV , WV ∈ R(d+dT )×dh is the
weight matrix that needs to be trained. αjm is the attention
coefficient, indicating the importance between the m-th history
message and the most recent one, and αjm can be specifically
presented by:

αjm = softmax([Msgj(t)]m, [Msgj(t)]0)

=
exp

(
([Msgj(t)]0WQ)([Msgj(t)]mWK)

)∑N
n=1 exp

(
([Msgj(t)]0WQ)([Msgj(t)]nWK)

) (8)

where the WQ, WK ∈ R(d+dT )×dh are the weights allocated
to mix the request features with encoded time for producing
the integrated features from different perspectives. Besides,
softmax(·) is a function that aims at normalizing the obtained
coefficients and emphasizing the weights of important ele-
ments. [Msgj(t)]m or [Msgj(t)]n for m,n = 1, ..., N − 1 are
the m-th or n-th message in Msgj(t) and [Msgj(t)]0 is the
latest one.

It is worth noting that, instead of considering the effect of
all historical requests, inspired by GraphSAGE [33] and TGN
[32], we only sample the most recent N historical messages
for aggregating. As for those only with M interactions, where
M < N , we pad their history behavior set Msgj(t) with mask
operation, as done in Transformer [31].

Besides, in view of the excessive smoothing effect incurred
by increasing the number of network layers for information
transmission and aggregation of nodes, we introduce the “skip-
connection” derived from ResNet [34] to combine the obtained
representation with the base message [Msgj(t)]0 by a feed-
forward network FN(·). We believe it will also improve the
overall performance of the model by capturing non-linear
interactions between the features:

Msgj(t) = h′j(t) = FN (hj(t)||Rj0)

= ReLU ((hj(t)||Rj0)W0 + b0) W1 + b1
(9)

where h′j(t) ∈ Rd is the final aggregated vector representing
the time-aware embedding at time t, and can also be denoted
as Msgj(t). And W0 ∈ R(dh+d)×d0 , W1 ∈ Rd0×d, b0 ∈ Rd0 ,
b1 ∈ Rd are weight parameters to be trained in the neural
network.

Empirically, [31] suggests that a multi-head attention may
avoid the instability of the training process and promotes the
performance of self-attention. We also extend the adopted
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Fig. 3. The illustration of AoI-based temporal attention graph neural network and the multi-head attention mechanism.

attention to the multi-head setting, as presented on the
right side of Fig. 3. We conduct an attention mechanism
with L heads and record each head’s output for user j

and content k with Eq. (7) and Eq. (8) as: h(l)
j (t) =

ATT (l)
(

[Msgj(t)](l), [Msgj(t)]
(l)
0 ,V(l)

)
, l = 1, 2, ..., L, and

the weights values in different heads are various. Actually,
it is a process that several single-head attentions carried out
independently in parallel to gain deeper insights from different
observation angles. Consequently, we modify Eq. (9) as:

Msgj(t) = h′j(t) = FN
(

h(1)
j (t)||h(2)

j (t)||...h(L)
j (t)||Rj0

)
(10)

In our experiment, we find the final attention architecture with
three heads (L = 3) will lead to a satisfactory result.

After extracting short-term interests with multi-head atten-
tion, we choose the Gated Recurrent Unit (GRU) [35] to finish
the memory updating. The vector of new memory for user j,
Mem′j , derived from the memory updater where update the
former memory Memj with the aggregated message h′j(t),
and it contains all the history that we have chosen in the
aggregating module. To some extent, it also captures the long-
term interest within the request data:

Mem′j = GRU
(

Memj ,Msgj(t)
)

= GRU
(
Memj ,h′j(t)

)
= Zt ·Ht + (1− Zt) ·Memj

(11)

where Zt is the update gate which decides the proportion of
information that need to be inherited from the last hidden state,
and Ht is the hidden state which is produced by ignoring some

previous state Memj and resetting the current input Msgj(t)
or h′j(t) by a reset gate Ft. They are conducted as follows:

Zt = σ
(
h′j(t)WhZ + MemjWMZ + bZ

)
Ft = σ

(
h′j(t)WhF + MemjWMF + bF

)
Ht = tanh

(
h′j(t)WhH + (Ft ·Memj) WMH + bH

) (12)

where WhZ , WhF , WhH , WMZ , WMF , WMH are the weights
of the recurrent neural networks, bZ , bF , bH are their bias
values. The activation function σ(·) is used to limit the result
within 0 and 1. Due to the process of forgetting and updating,
we obtain a new feature that contains user’s long-term interests
as well as the short-term ones. Similarly, a Long Short-
Term Memory (LSTM) or other RNN architectures have been
proven that they also have a similar gain in [18].

B. AoI-based Attention Mechanism

Faced with massive historical information, one of the es-
sential issues lies on deciding the amount of information that
deserves to be aggregated. If the chosen requests occurred too
long before, it may have a negative impact on the future, let
alone using all precious requests, leading to an unnecessary
increment in computing cost. Even we have restricted the
size of aggregated neighborhoods, the selected information
may still be non-positive to our prediction. To optimize the
result, we introduce the concept of AoI, which is a commonly-
adopted metric of information freshness in WSN. Inspired by
the application of filtering fresh data in WSN, we tend to pass
AoI to the TGN with attention (TGN-A) model for excluding
the information with an age that is too stale to be positive for
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Fig. 4. An example of age of information for a user’s request in Wikipedia
dataset.

the final prediction. For simplicity of representation, we denote
the TGN with AoI-based attention for temporal learning as
ATAGNN.

As introduced in [36], the age of information is usually
defined as:

∆jk(t, n) = t−Bjk(n) (13)

where Bjk(n) represents the birth time of the n-th request
between user j and content k, and t denotes the current time
or the newest time point of the messages. Hence, we can
easily figure out an age for each request. In fact, since our
training is based on batches, we regard the latest moment in
a batch as the independent variable. But unlike the traditional
way of calculating AoI, we regard the requests between two
nodes at various time points as different interactions to avoid
the influence reductions of repeated actions in the follow-up
calculation.

As shown in Fig. 4, we extract several request records of
one user that contain timestamp information and calculate their
respective ages with Eq. (13). Then, we concatenate all the age
data as an N -length vector aj , and pass it to a two-layer MLP
module to figure out a threshold, so as to finish the adaptive
selecting task of the worthy information for each vertex.

hth = MLP (aj) = ReLu(ajW1 + b1)

thret = MLP (hth) = ReLu(hthW2 + b2)
(14)

where aj ∈ RN , hth ∈ Rdth and thret ∈ R. Besides, W1 ∈
RN×dth and b1 ∈ Rdth , W2 ∈ Rdth and b2 ∈ R1 are the
training parameters of the 2-layer perceptron. We believe this
module can simply fit the general behavior based on the age
of requests and offer a threshold for determining whether the
information deserves to be taken into consideration or not.
And we discuss the details of the feasibility in Appendix A.

However, the fitting ability of an MLP is relatively prelim-
inary, which will bring certain deviations inevitably. In order

to decrease the potential impact of such deviations, we also
adopt a “soft method” to promote the performance:

t′njk = tnjk · σ (100 ∗ (∆jk(t, n)− thret)) (15)

where tnjk is the raw timestamps of the n-th interaction
between vertexes j and k in the dynamic graph G, and tn′jk
is the one we actually use in subsequent calculation, thret
is the threshold we obtain from the MLP. After calculating
Eq. (15), we mask all the requests with an age that is lower
than the threshold time, while redistributing a little greater
timestamp to those that are close to the threshold. Then we
execute the multi-head attention module with the new set of
valuable messages, as mentioned before.

C. Future and Structural Patterns Embedding

As the final module in our model, we choose a GAT to
accomplish the structure’s deeper extraction and the generation
of unique embedding representations for the participants of
an interaction we want to predict. In order to map the future
information, rather than the commonly adopted LeakyReLu(·)
in GAT [16], we promote the learning performance by adding
the encoded target timestamps into the memory vectors and
adopting a linear transformation with a dot-product:

αgjk =
exp((h̃kWg

Q)T (h̃jWg
K)∑

m∈N (vj ;t)
exp((h̃mWg

Q)T (h̃jWg
K)

(16)

where Wg
K and Wg

Q are the weight parameters that we
employ to capture the relationship between time encoding
and the output of temporal leaning Mem′j . Besides, the
h̃j = [Mem′j ||ΦdT (∆Tp)], and ∆Tp = Tp−Tl is the difference
between the target timestamp Tp to predict and the most
recent timestamp Tl of a request in history from user j, where
Tp ≥ Tl. As we presented before, the more attention heads, the
better structural representations will be extracted. Therefore,
we also encapsulate a multi-head attention mechanism into
this module.

We desire to generate reliable representations for the poten-
tial users and content by the above model, and calculate their
correlation degree as a reference for judging users’ coming
behavior. Finally, we summarize the above algorithm in Al-
gorithm 1. Meanwhile, we provide a comprehensive graphical
illustration of our AoI-based temporal attention module for
user j’s temporal learning in the upper left part of Fig. 3.

V. SIMULATION RESULTS AND NUMERICAL ANALYSIS

In this section, we evaluate the performance of the mod-
els we mentioned above based on two real-world datasets:
Wikipedia and MOOC. We also make a comparison between
our models and four state-of-the-art methods designed for
representation learning in temporal networks, including RNN
[25], DyRep [30], TGAT [18] and TGN [32]. Besides, an
experiment of cache hit rate in ICN between our prediction-
based caching approach and the traditional policies (e.g., LRU
and LFU) is also conducted.
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TABLE II
THE RESULTS OF TRANSDUCTIVE LEARNING AND INDUCTIVE LEARNING TASKS FOR PREDICTING FUTURE LINKS OF NODES. TGN-L, TGN-M AND

TGN-A ARE THE TGN MODELS THAT KEEP THE LATEST MESSAGE, AVERAGING ALL MESSAGES AND USING AN ATTENTION MECHANISM FOR A FIXED
NUMBER OF MESSAGES, RESPECTIVELY. 5N, 10N AND 15N MEAN THE NUMBER OF NEIGHBORS THAT THE ATTENTION MECHANISM AGGREGATES. THE

BEST RESULTS IN EACH COLUMN ARE HIGHLIGHTED IN BOLD FONT AND THE BEST RESULTS IN THE BASELINE ARE HIGHLIGHTED IN UNDERLINE.

Dataset Wikipedia MOOC
Metric Old AUC Old AP New AUC New AP Old AUC Old AP New AUC New AP

Baseline

RNN 76.476 77.100 - - 70.394 70.461 - -
DyRep 93.823 94.313 91.795 92.668 87.498 83.591 87.201 83.493
TGAT 95.391 95.710 93.241 93.810 74.413 69.932 73.211 69.282
TGN-L 98.406 98.470 97.700 97.805 92.026 89.855 92.447 90.494
TGN-M 98.342 98.426 97.741 97.864 90.951 88.423 92.271 90.319

TGN-A
5n 98.481 98.559 97.806 97.911 93.091 90.944 92.994 91.014

10n 98.509 98.600 97.923 98.044 93.088 91.078 92.737 90.783
15n 98.508 98.589 97.909 98.029 93.384 91.280 93.103 91.090

ATAGNN
without
Eq. (15)

5n 98.514 98.591 97.925 98.035 93.183 91.150 93.109 91.111
10n 98.530 98.605 97.883 98.013 93.554 91.603 93.310 91.421
15n 98.510 98.594 97.955 98.074 93.541 91.516 93.424 91.478

ATAGNN
with

Eq. (15)

5n 98.544 98.625 97.915 98.026 93.362 91.396 93.302 91.394
10n 98.526 98.610 97.941 98.066 93.577 91.635 93.330 91.376
15n 98.539 98.632 97.957 98.061 93.568 91.572 93.269 91.300

Algorithm 1 The preference prediction algorithm with AoI-
based temporal attention GNN
Input: Dynamic request dataset;
Output: The presentations of users Euj and content Eik. And

predicate the preference between uj and ik p
1: Initialize the parameters for the whole network;
2: Initialize the memory buffer with zeros and message

buffer.
3: Restore the graph information (Inf ← all messages) and

divide it into several mini batches;
4: for each batch(vuj

, vik , eui, t) ∈ training dataset do
5: ṅ← Sample negatives;
6: Calculate the age ∆jk(t, n) and the threshold thret;
7: Filter and concatenate the valuable messages Msg(t);
8: Aggregate with multi-head attention mechanism in Eq.

(7), (10) and obtain Msgj(t);
9: Update features Memj in memory buffer with GRU in

Eq. (11);
10: Encode the time difference ∆Tp with Eq. (3) for all

nodes;
11: Concatenate the encrypted time feature with Memj , and

obtained the new feature h̃j as the input;
12: Obtain Euj (Tp) and Eik(Tp) through the modified GAT ;
13: Predict the correlation degree between users and content

with Eq. (5);
14: Optimize this network with BCELoss(·);
15: end for

A. Dataset Description

Wikipedia Dataset: It is a public dataset that records the
Wikipedia pages edited by users on Wikipedia within 30 days.
The number of entries and users involved is 9,227. There are

Fig. 5. Performance of training loss with different GNN models in MOOC.

more than 15,000 interactions, which represent the number
of edges in the bipartite graph. Besides, their interactions are
time-stamped. Finally, we perform a 70%-15%-15% chrono-
logical split for training, validation and testing.

MOOC Dataset: It is also a public dataset that records the
history of actions done by students on a MOOC online course
within one month, e.g., watching a video, or submitting an
answer. We select 5,763 users and 56 contents as the nodes
of the dynamic graph, which also consists of 175,856 time-
stamped interactions. Due to the larger amount of interactions,
we perform a 60%-20%-20% chronological split for training,
validation and testing.

Evaluation Tasks and Training Configuration: One of the
superiority of our model is that it can be easily generalized to
the new data. Thus, we verify our model’s performance in two
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(a) Transductive Task (b) Inductive Task

Fig. 6. 24-hour hit rate performance of MOOC datasets with different algorithms in Transductive and inductive tasks.

TABLE III
THE RESULT OF TGN-A WITH FIXED AGE THRESHOLD (I.E., 60S, 600S,

3,600S), THE ORIGIN MODEL WITHOUT CONSIDERING THE AGE AND THE
ATAGNN MODEL WITH MLP FOR ADAPTIVELY CHOOSING THRESHOLD.
THE BEST RESULTS IN EACH COLUMN ARE HIGHLIGHTED IN BOLD FONT.

Datasets MOOC
Metric Old AUC Old AP New AUC New AP

TGN-A
with
Age

60 92.363 90.191 92.234 90.004
600 92.695 90.612 92.686 90.696

3600 93.088 91.026 92.792 90.641
TGN-A without Age 93.091 90.944 92.994 91.014

ATAGNN 93.362 91.396 93.302 91.394

TABLE IV
COMPLEXITY FOR EACH MODEL AND TRAINING RUN-TIME IN MOOC.

Model Complexity Training Time Note
DyRep O(2Md) 27.608s -
TGAT O((kM0d)l) 177.140s k = 2, l = 2

TGN-L O((kM0d)l) 23.740s k = 2, l = 1

TGN-M O(Nd+ (kM0d)l) 75.380s k = 2, l = 1

TGN-A O(k0(N2d+Nd2) + (kM0d)l) 187.088s k = 2, l = 1, k0 = 2

ATAGNN O(k0(N2d+Nd2) + (kM0d)l) 187.683s k = 2, l = 1, k0 = 2

types of tasks, i.e., transductive task and inductive task. In the
transductive task, we evaluate model’s ability of predicting the
temporal links for those nodes that have been observed in the
training phase, which means that the validation set and test set
only contain those nodes that have appeared in the training set.
In contrast, the target of inductive task is to inspect the model’s
talent in representing the nodes that have never been trained, so
the nodes and interactions that we want to predict in validation
and test are potentially different from the data in training
phase. We also set a max number of aggregating for TGN-A
and our ATAGNN model. To demonstrate the influence of AoI,
we have a comparison between our model and TGN-A with
a fixed age threshold (i.e., 60s, 600s, 3,600s.), and the max
number of neighbors that we want to aggregate is 5. Simulation
results in Table II demonstrates that our proposed model could
yield superior performance in both tasks, especially in the
sparse MOOC dataset.

Before the training, we sample an equal amount of negative

Algorithm 2 The caching algorithm with neural network
1: Initialize and load the whole neural network and the

memory buffer;
2: for each hour ∈ [1, 24] do
3: if hour%Tu! = 0 then
4: for Tp = 0; Tp < 3, 600; Tp + δp do
5: Load the trained memory;
6: Obtain Euj (δp) and Eik(δp) with the neural net-

work;
7: Obtain the correlation degrees p̃kj (δp) between

users and content;
8: Count the possible activity with Eq. (1);
9: Clear the memory buffer;

10: end for
11: else
12: Update the trained memory with real data;
13: end if
14: Add up all the Ãk(δp) and sort them with a list;
15: Cache the top-C content according to the cache space.
16: end for

interactions to the positive node pairs, regarding the prediction
as a binary classifications problem, thus a BCELoss function
is chosen. We adopt an Adam optimizer with a learning rate of
0.0001, and a batch size of 200 for all examinations. Finally,
we adopt Area Under the ROC Curve (AUC) and Average
Precision (AP) [29] as the metrics to indicate the performance.

Caching Policy Setting: When we deploy our DGNN
model to produce the caching policy, unlike in the validation
and test exams, we have little prior knowledge about the users,
content and the possible timestamps of events. Inspired by
LFU, we narrow the prediction scope by only choosing those
entities that have been observed in the last one or two hours,
for which the overall number of candidates is too large. We
also design a caching algorithm that relies entirely on the
results from the aforementioned model. The main idea of our
policy is shown in Algorithm 2. It caches the contents from
all candidate items by counting the possible accessible actions
with Eq. (1) as well as the results of our model and generating
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(a) Transductive Task in Wikipedia. (b) Inductive Task in Wikipedia.

(c) Transductive Task in MOOC. (d) Inductive Task in MOOC.

Fig. 7. Hit rate comparison with different cache sizes in different datasets.
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(b) Inductive Task.

Fig. 8. Hit rate comparison with different update periods in Wikipedia.

“fake requests” to download the popular content in advance.
Moreover, if we update the memory with those fake requests,
they may mislead our subsequent prediction. Thus, we need
to update the memory with real interactions periodically, and
call it the memory update period, Tu.

We compare our popularity-based scheme with LRU and

LFU. LRU updates the caching by replacing the content that
has not been requested for a longest time, while LFU always
tries to keep those that have been most requested. Moreover,
to show the superiority of our ATAGNN over other models in
caching, we also compare it with the algorithm based on the
best state-of-the-art model, TGN-L.
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Cache-Hit Efficiency: Due to the lack of information for
predicting with LRU and LFU in the first hour, the comparison
with the traditional schemes is completed based on the testing
data of MOOC and Wikipedia within 23 hours and the cache
size is set as 15. There are 55 content in MOOC and more
than 500 items in Wikipedia with around 2,000 users involved
in our caching test.

Besides, the results of hit rate with various caching spaces
are evaluated as well. On the other hand, in all the aforemen-
tioned tests, the default models’ updating period for memory
buffer is 24 hours, i.e., it will generate all results at once
and never update the model’s memory in our simulation.
Therefore, we also carry out ablation studies to demonstrate
the effectiveness of different memory update periods (e.g.,
Tu = 24, 12, 4, 1).

Moreover, we calculate users’ preference to the content
every 6-second with flexible thresholds in different datasets
and list the ranking of the popularity for each hour. The tests
also include transductive and inductive tasks.

B. Results Analysis

Prediction result: Table II presents the prediction accuracy.
It can be observed that compared with some latest models
based on DGNN or RNN, an attention mechanism based
TGN model can provide deeper insights into the temporal
information, which leads to better results in both inductive
and transductive tasks, even without AoI. Especially in the
MOOC dataset, the average precision will reach an improve-
ment of about 2% after being integrated with an attention
mechanism to aggregate historical interactions. Meanwhile,
Table III demonstrates the positive impact of AoI when the
age threshold is 3,600s, and it also clearly presents that our
adaptive model can still win superior performance.

The results of TGN-L and TGN-M, as well as our models
shown in Table II also prove that the number of aggregated
information is an important factor that affects the results. Be-
sides, it is apparent that after taking the AoI as a reference for
choosing information, even without the Eq. (15), our model is
able to reach further improvement, since it effectively excludes
some stale information for certain vertexes. Furthermore, due
to the introduction of Eq. (15), the model can slightly alleviate
the error caused by the calculation of the threshold in the two-
layer MLP, especially in transductive tasks.

Fig. 5 presents the convergence performance between our
proposed models (i.e., TGN-A and ATAGNN) and some major
baselines (i.e., TGN-L, TGN-M, TGAT and DyRep). Obvi-
ously, when convergence is achieved, our proposed models
have lower loss values. In addition, we can also find that the
loss value decreases faster in our model. Moreover, combined
with the final results, as validated in Table II, although the final
convergence loss values are similar with TGN-L and TGN-M,
our models avoid the over-fitting problem in these two original
TGN models, which indicates a much stronger adaptability of
our models.

One of the major concerns comes from the computational
complexity and the time cost in training and practical appli-
cation. As a result, we analyze the time complexity of each

TABLE V
THE PERFORMANCE OF MODELS IN MOOC DATASET WITH TWO

DIFFERENT MEMORY UPDATE PERIODS, (I.E., 24 HOURS AND 1 HOUR),
AND DIFFERENT USER SETS.

Dataset Transductive Inductive
Model TGN-L ATAGNN TGN-L ATAGNN

Cache Size 24 1 24 1 24 1 24 1

Past
users

10 47.106 46.527 49.074 48.848 50.555 49.374 52.870 53.182
15 61.944 62.097 65.190 65.860 63.673 62.290 67.598 67.025
20 75.057 74.486 79.170 77.979 76.384 72.942 81.114 79.947

Future
users

10 53.111 53.020 51.620 52.234 55.311 53.983 56.280 57.807
15 68.755 68.228 69.404 70.314 70.040 67.640 71.896 75.235
20 81.548 80.788 83.284 84.685 80.078 77.653 84.684 87.397

algorithm based on GNN model, and summarize it in Table
IV, where d is the number of feature dimensions. M is the
total number of the target’s neighbors. N and M0 represent the
number of samples adopted in message aggregator module and
the embedding module, respectively. k and k0 are the numbers
of heads that we adopt in the multi-head attention, and l
is the layer number of GAT module. Notably, the memory
module distinguishes TGN from TGAT, but the complexity
of memory module in TGN-L is approximately equal to a
constant, so TGAT and TGN-L have similar computational
complexity. However, consistent with the settings in [32], we
set the k = 2, l = 2 in TGAT, while TGN models can achieve
their best effect at k = 2, l = 1, making the training time of
TGAT steeply increased. The multi-head self-attention layer is
adopted in our proposed model’s aggregator module, and its
complexity O(N2d+Nd2) has a huge gap between TGN-L’s
O(1) and TGN-M’s O(Nd), which also results in a trundling
training process. But it is undeniable that it also leads to
more significant performance improvement in the more sparse
dataset MOOC.

Fig. 6 and Fig. 7 investigate the caching performance
sensitiveness of our method. Fig. 6 reveals the evolution
of the caching strategy based on our model and the best
state-of-the-art algorithm TGN-L as well as the traditional
caching algorithms’ hit rate within 23 hours with a cache
space of 15. Thanks to the sufficient aggregation of historical
information, ATAGNN based caching is able to keep supe-
rior for a long time, especially in Wikipedia. Besides, the
smooth performance within the MOOC dataset also implies
the stability of our models over traditional methods in caching.
Fig. 7 shows the average hit rate of our caching policy with
different maximum cache sizes (i.e., 5, 10, 15, 20). It can be
observed that our model can always provide a high-confidence
prediction result of the popularity for caching and greatly
improve the hit rate in most cases. Moreover, as the cache
space increases, the effect will be further improved. As for
the inductive task, even the prediction result is not as good as
the transductive one, our model can always keep its leading
role.

On the other hand, Fig. 8 displays the comparison between
our model and TGN-L concerning the Wikipedia dataset with
various update periods. The performance of both models
gradually decreases with the increase of update period, and
ATAGNN finally surpasses TGN-L at an update frequency
of every hour. In other words, our model relies more on the
history messages and an appropriate memory update is more
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essential and influential for our ATAGNN model when TGN-L
also owns a similar prediction capability.

Moreover, we also examine the performance of MOOC
dataset with different memory update periods (i.e., Tu =
24, 1). As shown in Table V, when the predictions are carried
out based on the users that have requested content in the
last hour, ATAGNN can always precede TGN-L. However,
unlike the results in Wikipedia, the performance of MOOC
with Tu = 24 is better than that with Tu = 1. On the other
hand, if we have prior knowledge about the users, we can
discover that the results have the same trend as Wikipedia
and are much better than the former setting. We also discover
that the distribution of the number of users requesting content
within two consecutive hours is more fluctuating in MOOC,
which may explain the divergence of the results, especially
when the prediction performance is also not as good as in
Wikipedia.

VI. CONCLUSION

In this paper, we develop an AoI-based temporal attention
graph neural network (ATAGNN) to maximize the precision
of users’ interest prediction in ICN. By aggregating the history
interaction messages with self-attention mechanism, the model
is able to generate a vector with rich temporal features.
Furthermore, in order to tackle the problem of staleness, the
concept of AoI is specifically introduced to exclude stale
information for better refining history. The results based on
two real-world datasets prove the superiority of the ATAGNN
model over other neural network models. Because of its
superior performance, a caching strategy totally based on the
ATAGNN’s prediction results with an appropriate memory
update period also wins a great improvement compared to
the traditional algorithms or the best baseline based method.
However, we also discover that the performance of our model
still has room for further improvement, especially when the
dataset is very sparse. Hence, we consider taking the semantic
information of content into consideration while using the
DGNN, for which semantic information may also imply the
users’ intentions and provide some implicit connections to help
us better model the structural patterns of the graph.

In addition to the application of content caching, as we
said before, with the development of intelligent-endogenesis in
network, more and more communication services will rely on
AI for processing, leading the pre-deployment of the AI model
even more important. We believe the popularity prediction and
deployment of AI models share many similarities with caching
content, and look forward to extending the scenario to the pre-
deployment of AI models.

APPENDIX A
PROOF OF THE EFFECTIVENESS OF THE AGE FILTER

According to the results from TGN-L and TGN-M [32] in
Table II, we can observe that the most recent message is more
important on the final predictions than averaging all history
features. On the one hand, the difference may derive from that
averaging smooths historical features too much. On the other
hand, the influence of a message may be inversely proportional

to its age and some are too old to be positive. The results of
Table V also prove this.

Theorem 1: We further assume that we can map the age
of information to the effectiveness of the current moment
with a function P(am), where am is the age of m-th history.
Due to the self-attention mechanism, all the chosen messages’
influence can be denoted as

∑N
m=0 βmP(am), where βm is

the attention coefficient we obtain from Eq. (8) and N is the
selected number. We believe when the proper threshold aM
satisfies P(aM ) ≤ 1

Z

∑N ′

m′=0 ∆β′
m
P(am′), it will filter useful

historical messages and improve our final predictions.
Proof A.1: If we want to filter the valuable information with

its age adaptively, the total effectiveness of historical informa-
tion turns into

∑N ′

m′=0 β
′
m′P(am′). And N ≥ N ′ = M − 1.

If the final results improve, we have the following condition:

N ′∑
m′=0

β′m′P(am′)−
N∑
m=0

βmP(am) ≥ 0 (17)

And it can also be considered as:
N ′∑
m′=0

(β′m′ − βm′)P(am′)−
N∑

m=M

βmP(am) ≥ 0

N ′∑
m′=0

(β′m′ − βm′)P(am′) ≥
N∑

m=M

βmP(am)

(18)

where aM is the threshold that we need. To solve this
inequality, we can relax the components on the right side:

N ′∑
m′=0

(β′m′ − βm′)P(am′) ≥ (N −M + 1)β̂P(aM )

P(aM ) ≤ 1

Z

N ′∑
m′=0

∆β′
m
P(am′)

(19)

where β̂ is the maximum value in am for m ∈ (M,M +
1, ..., N) and Z = (N − M + 1)β̂, ∆β′

m
= β′m′ − βm′ .

Moreover, due to the negative correlation between AoI and its
effectiveness, P(aM ) is also the maximum one. Obviously, if
Eq. (19) is satisfied, the (17) will be satisfied as well.

Remark 1: In practice, we find that we can solve this
inequality by using a two-layer MLP. We hope the first layer
can achieve the component of the right side and the second
layer can fit the inverse function of the mapping between age
and effectiveness. On the other hand, Eq. (15) is adopted to
make the backpropagation much easier.
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