
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 1, JANUARY 2022 215

RAN Information-Assisted TCP Congestion
Control Using Deep Reinforcement Learning

With Reward Redistribution
Minghao Chen , Graduate Student Member, IEEE, Rongpeng Li , Member, IEEE,

Jon Crowcroft , Fellow, IEEE, Jianjun Wu, Zhifeng Zhao , Member, IEEE,

and Honggang Zhang , Senior Member, IEEE

Abstract— In this paper, we aim to propose a novel
transmission control protocol (TCP) congestion control method
from a cross-layer-based perspective and present a deep rein-
forcement learning (DRL)-driven method called DRL-3R (DRL
for congestion control with Radio access network information
and Reward Redistribution) so as to learn the TCP congestion
control policy in a superior manner. In particular, we incorporate
the RAN information to timely grasp the dynamics of RAN,
and empower DRL to learn from the delayed RAN information
feedback potentially induced by several consecutive actions.
Meanwhile, we relax the implicit assumption (that the feedback to
one specific action returns at a round-trip-time (RTT) after the
action is applied) in previous researches, by redistributing the
rewards and evaluating the merits of actions more accurately.
Experiment results show that besides maintaining a reasonable
fairness, DRL-3R significantly outperforms classical congestion
control methods (e.g., TCP Reno, Westwood, Cubic, BBR and
DRL-CC) on network utility by achieving a higher throughput
while reducing delay in various network environments.

Index Terms— Deep reinforcement learning, congestion
control, radio access network, reward redistribution, delayed
feedback.

Manuscript received December 1, 2020; revised May 5, 2021 and August 30,
2021; accepted October 16, 2021. Date of publication October 26, 2021; date
of current version December 17, 2021. This work was supported in part by the
National Key R&D Program of China under Grant 2020YFB1804800, in part
by the National Natural Science Foundation of China under Grants 61731002
and 62071425, in part by the Zhejiang Key Research and Development
Plan under Grants 2019C01002 and 2019C03131, in part by the Huawei
Cooperation Project, in part by a Project sponsored by the Zhejiang Lab
under Grant 2019LC0AB01, in part by a Project sponsored by the Ministry
of Industry and Information Technology under Grant 2019-00891-2-1, and in
part by the Zhejiang Provincial Natural Science Foundation of China under
Grant LY20F010016. A part of this paper has been accepted by the 2021
IEEE International Conference on Communications Workshop [1] [DOI:
10.1109/ICCWorkshops50388.2021.9473523]. The associate editor coordi-
nating the review of this article and approving it for publication was
M. C. Gursoy. (Corresponding author: Rongpeng Li.)

Minghao Chen, Rongpeng Li, and Honggang Zhang are with the
College of Information Science and Electronic Engineering, Zhejiang
University, Hangzhou 310027, China (e-mail: minghaochen@zju.edu.cn;
lirongpeng@zju.edu.cn; honggangzhang@zju.edu.cn).

Jon Crowcroft is with the Department of Computer Science, University of
Cambridge, Cambridge CB2 1TN, U.K. (e-mail: jon.crowcroft@cl.cam.ac.uk).

Jianjun Wu is with Huawei Technologies Company, Ltd., Shanghai 201206,
China (e-mail: wujianjun@huawei.com).

Zhifeng Zhao is with the Zhejiang Lab, Hangzhou 311121, China (e-mail:
zhaozf@zhejianglab.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2021.3123130.

Digital Object Identifier 10.1109/TCOMM.2021.3123130

I. INTRODUCTION

THE unprecedented growth of Internet-based applications
has put significant strains on the Internet. Due to exces-

sively high data-sending rates or poor-quality channels, con-
gestion could happen at the bottleneck of Internet. As one
of the most important component of transport layer (TL),
congestion control has become a feasible solution to this
problem by trying to achieve a subtle state of equilibrium
between congestion avoidance and utilization improvement,
and many congestion control methods have been proposed
in recent decades. However, existing methods still have some
serious shortcomings. Firstly, some fundamental assumptions
therein are impractical in real-world networks, such as the
assumption that there is only one segment loss in each fast
retransmission process (e.g., TCP Reno [2]). Secondly, most
methods are rule-based so that they can only take actions
following some pre-set rules, which usually causes the failure
to adapt to underlying changes in networks.

To solve the aforementioned issues, deep reinforcement
learning (DRL) has been proposed in TCP congestion control,
since DRL can learn how to interact with the environment
(i.e., the Internet) without prior knowledge and gradually find
policies to obtain higher reward [3], [4]. The advantages of
applying DRL in congestion control are two-folded. On the
one hand, DRL can better fit the dynamic feature of congestion
control, because it can learn the dynamic changes of Internet
based on its experience so as to find superior congestion
control policies. On the other hand, DRL doesn’t need to
make excessive assumption on the dynamic feature or archi-
tecture of Internet. For example, it doesn’t limit the number,
location and access mode (wired or wireless) of bottleneck.
Unfortunately, previous researches on DRL-based congestion
control still possess some shortcomings. Firstly, many previous
researches treat radio access network (RAN) the same as wired
network, thus making the agent unable to fully utilize the
feature and information of wireless network. In this regard, the
idea to include RAN information in congestion control could
be re-leveraged [5], [6]. Secondly, as the feedback to each
controlling action is delayed, some previous researches have
implicitly set an assumption, i.e., the feedback of each action

0090-6778 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on January 16,2022 at 12:55:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7709-7355
https://orcid.org/0000-0003-4297-5060
https://orcid.org/0000-0002-7013-0121
https://orcid.org/0000-0002-5479-7890
https://orcid.org/0000-0003-1492-1364

216 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 1, JANUARY 2022

returns at a specific interval (e.g. an RTT) after the action is
applied, which may not hold in many practical TCP congestion
control scenarios. In addition, the acquired feedback may be
induced by several consecutive actions and reflect their joint
effect. Hence, it becomes a necessity to infer the “true” reward
(i.e., redistributed reward) for each action redistributed from
the acquired delayed feedback (i.e., delayed reward1). Thirdly,
it is rather difficult for a single agent to control the data-
sending rate of several TCP flows simultaneously.

In this paper, we focus on the congestion control prob-
lem in an RAN-information assisted network and develop a
DRL-based single-agent congestion control algorithm named
DRL-3R (DRL for congestion control with RAN information
and Reward Redistribution). Generally speaking, DRL-3R
firstly collects the RAN information piggybacked with ACK
segment, and predicts the current RAN information from the
delayed one(s). Afterwards, DRL-3R controls the data-sending
rate (i.e., the action) with both the predicted RAN information
(i.e., the RAN state) and other information (i.e., the Transport
Layer state) collected by the server. Meanwhile, DRL-3R
stores the historical state, action and delayed reward, and
analyzes the delayed reward to get the redistributed reward
for each action at the end of each episode. Finally, it learns
from the historical experience to yield superior performance,
achieving higher throughput while reducing RTT, and main-
taining excellent fairness. Considering the latest 5G and its
feature, i.e., high speed and low latency, DRL-3R can better
utilize the advancement of 5G, so as to provide better quality
of experience. Moreover, DRL-3R assumes that RAN is not
always a bottleneck of transmission, which is consistent with
the development of 5G, since advancement in wireless access
technologies has made wireless transmission more stable and
faster. Contributions of this paper2 are summarized as follows.

• We incorporate RAN information in DRL-based con-
gestion control, which facilitates the agent to know the
information of a potential bottleneck directly and take
actions to prevent congestion in RAN, and increases the
network utilization eventually. We also propose a method
to predict latest RAN information from the delayed RAN
information.

• We propose a method to relax the implicit assumption in
previous DRL-based congestion control methods. Specif-
ically, we relax the assumption in two aspects: (1) we
assume the feedback returns around (instead of at or
before) a specific time interval; (2) we acknowledge that
each delayed reward contains the feedback of several
consecutive actions, and try to redistribute the delayed

1Note that in classical reinforcement learning perspective, based on the
Markov property, only the latest state-action pair contributes to the reward
returned by the environment. Instead, the “delayed” reward is induced by not
only the latest state-action pair, but also previous ones. Hence, the terminology
“delayed” is slightly abused.

2Notably part of the paper has been accepted in [1]. Compared with it, this
paper provides more detailed description on DRL-3R and adds significant
content to analyze reward redistribution more rigorously, thus proving its
correctness and rationality in reinforcement learning perspective. Also, this
paper evaluates DRL-3R in more complicated environments, proving more
solid basis and evidence on its effectiveness. Furthermore, it discusses the
effectiveness on RAN information, reward redistribution and parameters of
DRL-3R and provides additional implementation details.

reward to get the feedback of each action. To realize this
goal, we specially design the utility and reward function,
and redistribute delayed rewards to each action inspired
by RUDDER [7]. We believe this contribution could
be widely applied in a number of communications and
networking scenarios with commonly delayed feedback
for consecutive actions.

• To effectively control the data-sending rate of all TCP
flows with one agent, we design a representation network
to extract global information at each time-step. Mean-
while, we calibrate the action-selection process so as to
obtain superior performance in terms of fairness.

• We compare the performance of DRL-3R with several
widely-known baselines (e.g., TCP Reno [2], West-
wood [8], Cubic [9], BBR [10] and DRL-CC [11]) and
demonstrate the effectiveness and robustness of DRL-3R
in terms of fairness, throughput and RTT.

The remainder of this paper is organized as follows.
We firstly discuss related works in Section II. In Section III,
we present the system model and formulate the problem.
In Section IV, we present the architecture of DRL-3R in
details. We evaluate the performance of DRL-3R in Section V
and conclude this paper in Section VI.

II. RELATED WORKS

A. TCP Congestion Control

Congestion is a “jam” situation of the network, which
could happen if all network participants send data too fast or
the channel quality is poor. Traditionally, congestion control
methods, which aims to prevent congestion, takes segment loss
or bandwidth estimation as reference to control the congestion
windows (i.e., cwnd). In recent years, researchers try to include
RAN information in congestion control. In 2015, Feng et al.
proposed CQIC [5], which estimates the bandwidth from the
average channel quality indicator (CQI) of RAN and then
adjusts sending rate. In 2020, Xie et al. proposed PBE-CC [6],
which assumes that clients can get RAN information in real
time and estimate bottleneck bandwidth accurately. PBE-CC
shows excellent performance on throughput while reducing
RTT in several scenarios. However, both methods need clients
or users to estimate the available bandwidth or data rate
accurately based on pre-defined rules, which may be hard to
be implemented in real environment.

B. Deep Reinforcement Learning

Reinforcement learning (RL) is adopted to solve problems
formulated as Markov decision process (MDP). Typically,
there is an agent working in a specific environment. At each
time-step t, the agent receives current state st in state space S,
takes action at in action space A according to a policy π(st),
and receives the reward Rt+1 at the next time-step. The target
of RL is to learn how to map state to actions at each time-step
to maximize the reward [12].

A crucial component of RL is value function, which is
an estimation on how much accumulated discounted reward
the agent can receive in following time-steps. We mainly
focus on the state-action value function Qπ(s, a) (also called

Authorized licensed use limited to: Zhejiang University. Downloaded on January 16,2022 at 12:55:42 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: RAN INFORMATION-ASSISTED TCP CONGESTION CONTROL USING DRL WITH REWARD REDISTRIBUTION 217

Q-value) [12], which can be defined as Qπ(st, at) =
Eπ[

�∞
k=0 γk · Rt+k+1], where π is the adopted policy and

γ is the discount factor limited in (0, 1].
In recent years, the development of deep learning has

inspired researchers to consider using deep neural net-
work (DNN) as function approximator. In 2016, Mnih et al.
proposed a value-based Q-learning-based DRL method, i.e.,
deep Q-learning (DQL) [13], in which the DNN works as an
approximator to calculate value function Q(st,at).3 During
training, for each experience (st,at, rt+1, st+1), the target
value yt can be calculated from Bellman Equation [12] as

yt = rt+1 + γ · Q(st+1, π(st+1)|θQ) (1)

where π is the policy defined as π(st) =
arg maxa(Q(st,a|θQ)) and θQ is the parameter. The
DNN in DQL (also called DQN) can be trained using mean
square error (MSE) between Q(st,at) and yt. Similar to
Q-learning, DQL can only choose an action from A with
finite elements (i.e., discretized actions). To bring continuous
actions in RL, researchers have proposed policy-based
and actor-critic DRL methods. In 2016, Lillicrap et al.
proposed deep deterministic policy gradient (DDPG) [14],
an actor-critic, model-free DRL method. The agent of DDPG
contains two DNNs: actor A and critic C with parameters
θA and θC . Actor decides the action with respect to st,
and critic calculates Q(st, π(st|θA)|θC) to evaluate the
performance of actor. Critic can be trained the same as DQN,
and actor can be trained using policy gradient and chain rule
with respect to expected cumulated reward J [14], namely,
∇θπ

J = E[∇aQ(s,a|θC) · ∇θA
π(s|θA)|s=st,a=π(s|θA)].

Readers could refer to [15]–[20] for more variants of DRL.

C. DRL-Based TCP Congestion Control Method

In 2019, Xiao et al. proposed TCP-Drinc [21], which
applies one DQL agent for each TCP flow to control its cwnd
and achieves better performance compared with baselines.
However, when there are many TCP flows, TCP-Drinc highly
consumes computing resources. Besides, TCP-Drinc adopts
the implicit assumption (i.e., the feedback of one data-sending
rate controlling action returns at an RTT after the action is
applied). Also in 2019, Xu et al. proposed DRL-CC [11],
a congestion control method focusing on multi-path TCP
(MPTCP). Despite the fact that DRL-CC achieves significant
performance improvement on throughput over other baselines,
it ignores the delayed feedback issue and the reward applied in
DRL-CC only considers throughput, which might be harmful
in some scenarios with low bottleneck bandwidth. Also, it can
only adjust the cwnd of one flow, as addressed by Xu et al., “at
each epoch (i.e., time-step), DRL-CC only takes an action on
one (target) MPTCP flow” [11], which makes it inefficient to
deal with scenarios with many TCP/MPTCP flows. In 2020,
Emara et al. proposed Eagle [22], which introduces expert
experience in DRL-based congestion control. It takes TCP
BBR as an expert to generate some experience to speedup
its training process while enable exploration to find better

3Q(st,at) is the Q-value estimated in the implementation of reinforcement
learning, and Qπ(st,at) is the accurate Q-value.

action. In 2020, Cui et al. proposed Hd-TCP [23], which focus
on congestion control in high-speed railway scenarios, where
users’ signal quality often degrades severely, and handover
among base stations frequently happens. It has also proved that
DRL can find better policy for congestion control in highly
dynamic RAN scenarios. In 2020, Zhang et al. proposed
ARC [24], which is a framework to train and deploy DRL-
based congestion control methods in real network environment
by asynchronous learning methods. It has also demonstrated
that DRL-based congestion control can work in real network.
In 2021, He et al. proposed DeepCC [25], which applies multi-
agent DRL methods in MPTCP congestion control. It has also
empowered DRL with self-attention mechanism to deal with
changing number of MPTCP flows. Other similar methods
include Rax [26], TCP-RL [27], SmartCC [28] etc.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this paper, an RAN-included network architecture is
adopted, as shown in Fig. 1. A set of mobile users are
connected to a base station (BS) through RAN. The BS is con-
nected with the server through a core network (CN), which is
multi-hop and multi-path. TCP flows are established between
users and the server through the network and data is trans-
mitted from the server to users. The path of each TCP flow
is pre-decided. Note-worthily, DRL-3R should be deployed
at the data-sender, i.e., server in this paper. In DRL-3R, RAN
information is considered as a part of the state space to control
cwnd. According to the general principle of congestion control,
cwnd should be decreased when congestion happens due to
sophisticated factors, such as extremely high sending rate and
low-quality channel. Due to the highly dynamic and volatile
wireless channels, RAN can be considered as a potential
bottleneck in the whole network, which might significantly
affect the utility of the whole network. However, with the
advancement of wireless technologies, RAN should not always
be treated as the bottleneck. To better leverage this useful
auxiliary RAN information, in DRL-3R, we leverage the RAN
information prediction module to timely learn the dynamic
of a potential bottleneck, so as to become more vigilant
when RAN (potentially) becomes a bottleneck. In particular,
we choose the user-received signal strength and the physical
resource block (PRB) available ratio as the RAN state, since
the user-received signal strength decides the transmission rate
of each user directly while PRB available ratio indicates the
probability of each user getting PRBs. Specifically, the PRB
available ratio of user u ∈ U is calculated as the proportion
of user u getting needed PRBs in the latest several time-
slots. Notably, though we assume that users can collect these
information in real time and transmit them to the server piggy-
backed by the ACK segment, the latency from user to server
should not be neglected and will change dynamically due to
the variations of wireless channel. Meanwhile, information of
TL is taken into account in DRL-3R, consistent with [11],
[21]. Specifically, we consider five kinds of TL information,
including the change of cwnd and throughput in the past two
consecutive time-steps, the arriving interval of ACK segment

Authorized licensed use limited to: Zhejiang University. Downloaded on January 16,2022 at 12:55:42 UTC from IEEE Xplore. Restrictions apply.

218 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 1, JANUARY 2022

Fig. 1. A typical TCP scenario consisting of both RAN and CN, and applying
DRL-3R at the server.

(except duplicate ACK segment), RTT, and the ratio of current
minimum RTT over current RTT, which are referred as the TL
state.

B. Problem Statement

As shown before, our goal is to adjust cwnd properly to
achieve a superior performance. Similar to [21], we treat
congestion control as a dynamic-delayed, equilibrium-finding
and fairness-needed decision-making problem.

Firstly, it is a dynamic-delayed problem, which means that
the feedback of each action would not return at a fixed time.
Some researches (e.g. [21]) assume that an action should
receive its feedback at an RTT after the action is applied.
In other words, the feedback returning at time t is only decided
by at−RTT . However, this assumption may not hold in net-
work as RTT is changing over time. As the server can’t predict
the real-time RTT accurately, it is not practical to make this
assumption. Also, the feedback acquired by this assumption
may contain feedback of several consecutive actions. In this
paper, inspired by RUDDER [7], we propose similar reward
redistribution to deal with this problem. Compared with the
assumption noted before, DRL-3R relaxes this assumption into
a weaker one.

Secondly, congestion control is an equilibrium-finding
problem. Throughput and RTT are mutually exclusive. There-
fore, we need to find an equilibrium in this case so that we can
get a good throughput with an acceptable RTT, and DRL-3R
is capable of achieving this goal.

In the end, congestion control is a fairness-needed problem.
When a set of TCP flows share the limited bandwidth, it is
necessary to maintain the fairness among all TCP flows. In this
paper, the α-fairness function is adopted to ensure the trade-
off between fairness and utilization. DRL-3R achieves a higher
fairness compared with baselines.

C. Problem Formulation

Beforehand, the definition of time-step and time-slot should
be clarified. Time-slot is the minimum time granularity con-
sidered in this paper, while time-step, an integral multiple of
time-slots, is defined as the agent’s decision-making frequency.
For example, setting a time-step equal to 10 time-slots means
that the agent makes a decision every 10 time-slots.

Inspired by [21], we define the long-term throughput x(t)
as

x(t) =
t+Lhor−1�

κ=t

x̂(κ) · ηκ−t (2)

where Lhor is the number of time-steps considered by x(t)
(i.e., horizon), η is the decay coefficient limited in range (0, 1],
and x̂(κ) is the throughput measured at time κ. Note that
this equation calculates the long-term throughput of a TCP
flow instead of all flows. We use this form as the action (i.e.,
change of cwnd) has long-tail effect, i.e., the impact of an
action lasts for a period of time but decreases exponentially
as [21] suggested.

Finally, we propose the utility function U(t) as

U(t) =
�
u∈U

γu · Uαt(xu(t)) −
�
u∈U

δu · Uαr (RTTu(t)) (3)

where xu(t) is the long-term throughput of u, γu and δu are
weights which define the relative importance of throughput
and RTT, and αt and αr are fairness parameter of long-term
throughput and RTT, respectively. In particular, we adopt the
α-fairness function as [29]

Uα(κ) =

⎧⎨
⎩

log(κ), if α = 1
κ1−α

1 − α
, else

(4)

where α is the fairness parameter. For simplicity, we set all
users’ γu and δu are identical, and αt = αr = α.

D. DRL-Based TCP Congestion Control

In this paper, we adopt DRL to jointly optimize the through-
put and RTT. In this section, we elaborate the details of our
MDP, i.e., state space S, action space A and reward R.

1) State: Our state space S contains two parts, i.e., RAN
state and TL state of each TCP flow, whose details are shown
in Section III-A. Notably, throughput and ACK arriving inter-
val are processed by exponentially weighted moving-average
(EWMA). The ratio of minimum RTT over RTT works as
the ratio of propagation delay over total RTT, as the minimum
RTT can be considered as the estimation of propagation delay.
The minimum RTT can be defined as the minimum RTT
among all flows at current time-step. Finally, the state at time-
step t, i.e., st, is a concatenation of RAN state and TL state,
and contains states of all TCP flows.

2) Action: The action is set as the change of cwnd of each
TCP flow. Let at = {au,t, u ∈ U} be an |U|-dimension
action vector. The action can be applied as cwndu,t = 2au,t ·
cwndu,t−1. Note that each component of at is limited in
[−1, 1]. The minimum and maximum cwnd of each TCP flow
may also be limited based on the environment. This setting of
actions to cwnd enables that the new cwnd can be twice as the
last cwnd in maximum or half in minimum, which facilitates
a flexible control and fast correction of cwnd. It also ensures
that the maximum instantaneous changing rate of cwnd is
consistent with TCP Reno’s, to prevent over-adding or over-
reducing of cwnd.

Authorized licensed use limited to: Zhejiang University. Downloaded on January 16,2022 at 12:55:42 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: RAN INFORMATION-ASSISTED TCP CONGESTION CONTROL USING DRL WITH REWARD REDISTRIBUTION 219

Fig. 2. An illustration of the architecture of DRL-3R. State and action represented by three blocks (e.g., predicted RAN State) indicate global state and
action, while state represented by one block indicate local one. Target network and replay buffer are not shown in this figure.

3) Reward: We use the utility function defined in
Section III-C to calculate the delayed reward. We cut the
whole state-action sequence of an episode into several short
sequences with equal length L, and calculate a delayed reward
for each sequence. In the following Section IV-C, we will
explain how to redistribute the delayed reward to each action
in detail.

For a sequence starting at time-step t and ending at time-
step t+L− 1, its delayed reward is defined and calculated as
R̂t+L = U(t + 2L − 1) − U(t + L − 1). Reward clipping is
also used to limit the delayed reward in [−1, 1]. This delayed
reward indicates that how much effect this sequence of actions
have on utility function.

IV. ARCHITECTURE AND DESIGNATION OF DRL-3R

A. Overview

As Fig. 2 shows, DRL-3R mainly encompasses three parts,
i.e., RAN information prediction, reward redistribution, and
representation network-enforced DDPG based DRL. At each
time-step t, the environment provides RAN and TL state to
the agent. We apply RAN information prediction to predict the
latest RAN state. Afterwards, the global state (i.e., predicted
RAN state and TL state of all TCP flows) is sent into the
representation network, which extracts a feature vector from
several latest state. Then, the feature vector is provided to
actor and critic. In action selection process, the actor decides
the action to separately control cwnds of all individual TCP
flows, by optimizing the global utility with shared information

(i.e., state) of all TCP flows connected to the same server.
While deciding the action on TCP flow related with user u
(i.e., au,t), the actor receives the local RAN and TL state
(i.e., the RAN and TL state of u) and the feature vector.
In the learning process, the environment provides delayed
reward to reward redistribution module at a specific time-step.
The reward redistribution module redistributes the delayed
reward to each time-step and gets redistributed reward, which
finally constitutes the experience (i.e., state, action, redis-
tributed reward, next state) which can be learned directly
by representation network-enforced DDPG. From a general
perspective, DRL-3R is trained neither for a TCP flow nor a
client or user. It is trained for all TCP flows connected to the
same server. Also note that such settings are also consistent
with DRL-CC [11], and we only consider one server in this
paper.

B. RAN Information Prediction

The RAN information prediction module provides the esti-
mated RAN state to the agent. We assume that users can get
RAN state in real time, and transmit it to the server with
ACK segment. At each time-step, the agent at the server gets
a sequence of RAN state with exact collected timestamp to
predict the latest RAN state. We simply use two long short-
term memory (LSTM)-based neural networks with the same
structure to predict user-received signal strength and PRB
available ratio separately. Moreover, since RAN state may not
be collected in constant time interval, we include the time

Authorized licensed use limited to: Zhejiang University. Downloaded on January 16,2022 at 12:55:42 UTC from IEEE Xplore. Restrictions apply.

220 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 1, JANUARY 2022

interval of RAN state in the prediction as a feature. The
label (i.e. true value of RAN state) can be easily collected as
RAN state can be acquired from BS or user at each time-slot.
Therefore, we can set up two datasets to train two prediction
networks separately.

C. Reward Redistribution

As explained in Section III-B, the congestion control prob-
lem is a dynamic-delayed problem, which means that the
feedback of each action would not return at a fixed time
interval. Traditionally, it is widely assumed that the feedback
induced by action at taken at time t returns at t + RTT .
However, this assumption may not hold as the server can’t
predict real-time RTT accurately. Meanwhile, feedback could
be induced by several consecutive actions as well.

In this paper, inspired by RUDDER [7], we adopt reward
redistribution to partly relax this assumption and compute
redistributed reward from delayed ones. We define a delayed-
rewarded MDP M̂ with an episode of T +1 time-steps starting
from 0 to T , and the environment returns a delayed reward
R̂T+1 at the end of the episode. The state-action sequence is
defined as (s0,a0), · · · , (sT ,aT).

To redistribute the delayed reward to each state-action pair
and get redistributed rewards, we firstly introduce the concept
of sequence-Markov decision process (SDP), which is quite
similar to MDP. The only difference between SDP and MDP is
that the reward of SDP could be not Markov, while the reward
of MDP must be Markov. More precisely, the reward in MDP
is only decided by the former state and action. Instead, the
reward in SDP may be decided by several consecutive state-
action pairs, which allows the existence of delayed reward,
because delayed reward is decided by several state-action pairs
instead of only the former one. The definitions of other com-
ponents of SDP and MDP, including state space, action space
and state-transmission probability, remain identical. Clearly,
M̂ is also an SDP.

Secondly, we introduce the concept of second-order Markov
reward redistribution, which can redistribute the delayed
reward and change an SDP with delayed reward into an
SDP without delayed reward. For SDP M̂, a new SDP M
without delayed reward, which shares the same state space,
action space and state-transmission probability with M̂ but
different reward, can be obtained by second-order Markov
reward redistribution, which is defined as follows.

E[Rt+1|(st−1,at−1), (st,at)]=Q̂π(st,at) − Q̂π(st−1, at−1)
(5)

where Q̂π(st,at) is the Q-value of (st,at) of SDP M̂, and
Rt+1 is the redistributed reward of (st,at) of SDP M. [7]
proves that M̂ and M share the same optimal policy, so we
can get the optimal policy of M̂ by solving M. Besides,
if the reward redistribution is optimal, i.e., Rt+1 is independent
of state-action pairs between t + 1 and the end of episode,
the estimation of the Q-value of (st,at) of SDP M [i.e.,
Qπ(st,at)] can be simplified into the estimation of Rt+1 while
solving M. Based on these ideas, we have three means to solve
M: (1) Q-value estimation, which estimates the Qπ(st, at) by

estimating Rt+1. (2) Policy-gradient method, which replaces
Q(st, at) with Rt+1, as both Rt+1 and Q(st, at) can be seen
as the estimation of Qπ(st, at). (3) Q-learning, which treats
M as an MDP.

To realize the second-order reward redistribution, we define
a return-prediction function g to predict the expected cumula-
tive reward (i.e., return) of M̂ for a given state-action sequence
ending at time-step t, i.e., Q̂π(st, at), and the output of g is
considered as Q̂(st, at). We also define a difference function
Δ[(st−1, at−1), (st, at)], to calculate the specific information
contained by (st, at), because (st, at) should contain the
information of (st−1, at−1) according to Markov property.
Δ can be defined according to the environment. In this paper,
we simply define Δ as the numerical difference between
state-action pairs (st, at) and (st−1, at−1). The state-action
sequence processed by the function Δ can be rewritten as
follows.

Δ0:T

= {Δ[(s−1, a−1), (s0, a0)], · · · , Δ[(sT−1, aT−1), (sT ,aT)]}
(6)

Then, g should ensure

g(Δ0:T) = Q̂(sT , aT) = R̂T+1 (7)

This equation can be explained as follows. On the one
hand, Q̂(sT , aT) is calculated by g(Δ0:T) and works as an
estimation of Q̂π(sT , aT). On the other hand, Q̂(sT ,aT) =
R̂T+1 should be ensured because Q̂π(sT , aT) is the expected
cumulative reward after time-step T , and the only reward after
T is R̂T+1. If a neural network is applied as g, this equation
defines the label during its training process. Proposed by [7],
g(Δ0:T) can be decomposed into

g(Δ0:T) =
T�

t=0

ht (8)

where ht is the contribution of (st, at) to the predicted
expected return. Similarly, g(Δ0:t) can also be decomposed
into

g(Δ0:t) =
t�

i=0

hi (9)

Clearly, ht can be calculated by g(Δ0:t) − g(Δ0:t−1).
Specially, we set h0 = g(Δ0:0). Note-worthily, the relationship
between ht and Rt+1 can be described as

E[Rt+1|(st−1, at−1), (st, at)] = ht (10)

We leave the proof of this equation in Appendix A. With
respect to the function g, there could be an error between
g(Δ0:T) and R̂T+1. Therefore, an extra redistributed reward
RT+2 is added.

RT+2 = R̂T+1 − g(Δ0:T) (11)

In the end, we conclude the basic calculation method of
reward redistribution as

E[R1|(s0, a0)] = h0 = g(Δ0:0)
E[Rt+1|(st−1, at−1), (st, at)] = ht = g(Δ0:t) − g(Δ0:t−1)

(12)

Authorized licensed use limited to: Zhejiang University. Downloaded on January 16,2022 at 12:55:42 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: RAN INFORMATION-ASSISTED TCP CONGESTION CONTROL USING DRL WITH REWARD REDISTRIBUTION 221

Algorithm 1 Reward Redistribution

Input: State-action sequence (s0,a0), · · · , (sT ,aT), return-
prediction function g, difference function Δ, 0 ≤ t ≤ T

Output: Expectation of redistributed reward ht

1: Calculate Δ[(st−1,at−1), (st,at)];
2: Calculate g(Δ0:t) = g{Δ[(s−1,a−1), (s0,a0)], · · · ,

Δ[(st−1,at−1), (st,at)]};
3: Calculate ht and RT+2 by Equ. (12) and Equ. (11);
4: return ht, RT+2

Algorithm 1 shows the complete process of reward redistri-
bution and Fig. 3 illustrates this algorithm from another per-
spective. For a state action pair (st,at), before it is executed,
the expected return is g(Δ0:t−1). Once executed, the expected
return is g(Δ0:t). The numerical difference between g(Δ0:t)
and g(Δ0:t−1) (i.e., ht) can be seen as the contribution of
(st,at). Moreover, an LSTM-based network can be used to
predict g, as g needs to accept length-varying input. During
the training process, Δ0:T is used as input while R̂T+1 is
treated as the label. Finally, R̂T+1 has been redistributed to
each time-step, which finally constitutes a new SDP M and
can be solved with traditional RL methods.

Furthermore, we make the following modifications on the
aforementioned reward redistribution to better fit our envi-
ronment. (1) We use the mathematical expectation of Rt+1

as its true value, i.e., ht = Rt+1. (2) In our environment,
if we only return a final delayed reward at the end of each
episode (which is a whole cwnd-controlling process lasting
for several seconds), it would be very difficult to redistribute
it to every time-step, because the RAN-included network is
time-varying in a fast manner, and the final delayed reward
can’t contain the dynamic information during an episode.
Hence, we cut each episode into several shorter sequences
with length L, return a reward for each sequence separately
as described in Section III-D, and redistribute it to each action.
(3) As we could not add an extra reward RT+2 at the end of
each sequence, we apply a new method called redistribution
correction, which is shown in Algorithm 2 to ensure Equ. (7).
Finally, we propose the following theorem on our reward
redistribution.

Theorem 1: The reward redistribution applied by DRL-
3R ensures that M̂ shares the same optimal policy with M
constituted by the same state space, the same action space and
redistributed reward.

We leave the proof in Appendix B.

Algorithm 2 Redistribution Correction

Input: Return-prediction function g(Δ0:t), 0 ≤ t ≤ T , and
delayed reward R̂T+1

Output: Redistributed reward Rt+1

1: Calculate RT+2 = R̂T+1 − g(Δ0:T);
2: Calculate uncorrected redistributed reward R�

t+1 =
g(Δ0:t) − g(Δ0:t−1) for t �= 0, and R�

1 = g(Δ0:0);
3: Calculate the average error E = RT+2

T+1 ;
4: Correct redistributed reward Rt+1 = R�

t+1 + E;
5: return Rt+1

D. Representation Network

Inspired by DRL-CC [11], we also apply the represen-
tation network as a feature extractor to extract the time-
series relationship among global state from several latest
time-steps. As global state contains the state of all TCP
flows at each time-step, the extracted feature also contains
information from all TCP flows, and can be considered as
a more complete global feature compared with DRL-CC.
We denote the maximum number of time-steps considered
by representation network as Lrep. The global state sequence
sseq,t = {st−Lrep+1, st−Lrep+2, · · · , st} works as input to
representation network, and the output vector works as the
feature vector which contains global information. Similar to
DRL-CC, the representation network of DRL-3R can also be
trained together with actor and critic in an end-to-end manner.
Xu et al. [11] believe that this could bring better performance
than training separately.

E. Representation Network-Enforced DDPG-Based DRL

In this section, we formally introduce the core part of
DRL-3R, which is based on DDPG [14]. Note that in Section I,
we address that DRL-3R tries to relax the implicit assumption
into a weaker one. With the reward redistribution described in
Section IV-C and delayed reward described in Section III-D,
our assumption can be addressed as follows.

Assumption 1: The feedback of actions in each sequence
would return at around L time-steps after the end of the
sequence.

The characteristic of Assumption 1 is as follows. (1) We do
not assume that the feedback returns at or before a specific
time-step. Instead, we allow the feedback returning around a
specific time-step. If the feedback of an action returns shortly
before L time-steps after the end of the sequence (i.e., time-
step t + 2L − 1), its feedback would be considered by the
calculation of utility function at time-step t + 2L− 1. On the
contrary, its feedback would also be considered according
to the definition of utility function in Equ. (3). (2) We
acknowledge that though we can’t calculate the feedback or
reward of each action accurately, we directly apply the delayed
reward reflecting the influence of a series of actions and try
to redistribute the delayed reward to each action.

On top of the DDPG introduced in Section II-B, we integrate
it with the modules (i.e., the RAN information prediction
module and the reward redistribution module) and formally
propose the process of DRL-3R, as shown in Algorithm 3.

V. PERFORMANCE EVALUATION

A. Experiment Setup

In our simulation scenario, there are 30 users located in
a square with side length of 80 meters surrounding the BS
located at the center. All users are moving with the speed of
2m/s and a fixed direction angle θ. The direction and location
of each user are initialized randomly at the beginning of each
episode. As shown in Fig. 1, the BS is connected with CN
via one edge router. Furthermore, there only exists one link
between the BS and the edge router. 3 independent identical
links bridge edge router and the server with another router

Authorized licensed use limited to: Zhejiang University. Downloaded on January 16,2022 at 12:55:42 UTC from IEEE Xplore. Restrictions apply.

222 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 1, JANUARY 2022

Fig. 3. An illustration of the implementation method of reward redistribution. g is the return-prediction function which accepts varying-length sequence,
Δ is the difference function. Green solid arrays means state-action transitions between different time-steps, black solid arrays means neural network training
and calculation process of reward redistribution.

on each link. We set that each link is shared by 10 TCP
flows, and the path of each TCP flow remains identical in
our whole experiment. We assume a full-buffer server, which
always has data to transmit and sends in a ‘bulky’ manner,
i.e., its application tries to send data as fast as possible, and
the maximum sending rate of each TCP flow is limited as
23.4 Mbps to simulate the phenomenon where the server aims
to guarantee service provisioning to more users by limiting the
maximum sending rate of each TCP flow. However, it should
be noted that this maximum sending rate is 6 times of the
biggest downlink bottleneck bandwidth, and the competition
among TCP flows can be effectively simulated. The length of
each episode is set as 2 seconds to simulate scenarios with
relatively shorter flows in Internet (e.g., downloading short
video). The length of a time-slot is set as 0.5 milliseconds and
the length of a time-step is set as 20 milliseconds (40 time-
slots). The minimum cwnd of DRL-3R is set as 1 maximum
segment size (MSS) and the maximum is set as 50 MSSs.

We build the aforementioned environment using Python and
DRL-3R using Python and Pytorch [30], and use DRL-3R
to replace traditional congestion control methods, so as to
“take over” the control of cwnd from traditional methods.
Currently, we don’t consider the connection between transport
layer and application layer,4 and assume that the program
of DRL-3R can directly control cwnds of all TCP flows

4We have testified the feasibility to connect a more realistic platform (e.g.,
ns-3) with Python and Pytorch inspired by ns3-gym [31]. However, due to
the space limitation, we leave the more comprehensive and careful evaluation
as future works.

and get needed information, i.e., RAN state and TL state.
Besides, basic functions of TCP protocol remain unchanged.
We test DRL-3R in several typical scenarios, including three
steady scenarios (Scenario 1-3) and three dynamic scenarios
(Scenario 4-6). We compare DRL-3R with a few representative
congestion control methods, including TCP Reno [2], TCP
Westwood [8], TCP Cubic [9], TCP BBR [10] and DRL-
CC [11]. For TCP BBR, when the estimated bottleneck
bandwidth’s improvement of two rounds is less than 25%,
it would change from start phase to drain phase, to prevent
over-estimation of the bandwidth. For DRL-CC, the goodput
in its state space and derivation of RTT are defined the same
as throughput in this paper, and devRTT in TCP protocol,
respectively. To ensure fair comparison between DRL-3R and
DRL-CC, DRL-CC shares the same maximum cwnd changing
rate, architecture of actor, critic and representation networks,
and other key RL parameters (e.g., time-step, replay buffer
size, etc.) as DRL-3R. Furthermore, the output of DRL-CC’s
actor is limited in [−1, 1] and is transformed linearly to control
the cwnd.

B. Pre-Training

In DRL-3R, the neural network of RAN information predic-
tion module and reward redistribution module need to be pre-
trained. We firstly generate datasets to train RAN information
prediction networks. For each kind of RAN information (i.e.,
user-received signal strength and PRB available ratio), a spe-
cific dataset, which is leveraged to train an independent neural
network, is generated by running the simulation scenario for

Authorized licensed use limited to: Zhejiang University. Downloaded on January 16,2022 at 12:55:42 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: RAN INFORMATION-ASSISTED TCP CONGESTION CONTROL USING DRL WITH REWARD REDISTRIBUTION 223

Algorithm 3 DRL-3R for TCP Congestion Control
Input: noise θn, batch size Nbatch, replay buffer size NRB and soft

update parameter τ ;
/* Initialization. */

1: Initialize representation network R, actor network π, critic net-
work Q with random parameters θR, θπ , θQ, respectively, and
target network R�, π�, Q� with parameters θR� = θR, θπ� = θπ ,
θQ� = θQ, respectively;

2: Initialize replay buffer RB with NRB;
3: Initialize noise with θn;

/* Action selection and experience processing. */
4: for every episode do
5: for every time-step do
6: Acquire RAN state sequences for all users, and predict the

latest RAN state, and acquire TL state of all users, and get
global state st;

7: Derive feature vector ft from Lrep latest states by R: ft =
R(st−Lrep+1, · · · , st|θR) = R(sseq,t|θR);

8: Derive an action at by π: at = {au,t = π(eu,t, ft|θπ), u ∈
U}, where eu,t is the local state of user u at time-step t, and
acquire a sample from noise, add it to at, and execute at;

9: Store sseq,t, at and current utility data (i.e., throughput and
RTT of all flows);

10: end for
11: Calculate delayed reward for each sequence according to utility

data, and redistribute delayed reward to each time-step t as
redistributed reward Rt+1 by Algorithm 1 and 2;

12: Store transition {sseq,t, at, Rt+1, sseq,t+1} in RB;
/* Learning. */

13: Sample Nbatch transitions {sseq,j ,aj , Rj+1, sseq,j+1} from RB,
j ∈ 1, 2, . . . , Nbatch;

14: Derive feature vector fj+1 by R�: fj+1 = R�(sseq,j+1|θR�);
15: Decide next action aj+1 by π�: aj+1 = {au,j+1 =

π�(eu,j+1, fj+1|θπ�), u ∈ U}, where eu,j+1 is the local state
of u at time-step j + 1;

16: Calculate the target value for critic by Q�: yj = Rj+1 + γ ·
Q�(sj+1, fj+1, aj+1|θQ�);

17: Update the parameters of critic by minimizing the MSE loss
between yj and
Q(sj, R(sseq,j |θR),aj |θQ);

18: Update the parameters of actor network by policy gradients:
1

Nbatch

�Nbatch
j=1 ∇aQ(s, f , a|θQ) · �u∈U ∇θπ π(eu, f |θπ), for

s = sj , f = R(sseq,j |θR), a = {au,j}, au,j = π(eu, f |θπ),
eu = eu,j ;

19: Update the parameters of representation network by policy
gradients:

1
Nbatch

�Nbatch
j=1 ∇aQ(s, f , a|θQ) · �u∈U ∇fπ(eu, f |θπ) ·

∇θR
R(sseq|θR), for s = sj ,

f = R(sseq,j |θR), a = {au,j}, au,j = π(eu, f |θπ), eu = eu,j;
20: Update the parameters of representation network, actor and

critic with soft update:
θQ� = τθQ + (1 − τ)θQ� , θR� = τθR + (1 − τ)θR� , θπ� =
τθπ + (1 − τ)θπ� ;

21: end for

many episodes and taking random action sampled from a
uniform distribution in the range of [−1, 1] at each time-
step since we have no prior knowledge of the distribution
of agent’s action. Therefore, we can get RAN information
sequences and their label (i.e., the true value) at each time-
step. In our experiment, each dataset consists about 0.2
million samples and MSE is used to train RAN information
prediction networks. Then, based on pre-trained RAN infor-
mation prediction networks, another dataset is generated to
train reward redistribution network. During the generation, the

same methodology is applied to generate about 0.18 million
samples with state-action sequence and its label (i.e. delayed
reward). Notably, both RAN information prediction networks
and reward redistribution network can converge in hundreds
of epochs.

C. System Implementation

In this part, we consider some details of the implementa-
tion of DRL-3R. Firstly, to realize the function of DRL-3R,
we need to modify the core codes of clients or users, so as
to acquire RAN information by piggybacking it in the header
of TCP segments. A flag bit should be added in the segments
of three-way handshake, to notify data-sender whether RAN
information is supported. Secondly, we emphasize that the
overhead caused by DRL-3R is quite acceptable. We introduce
extra overhead in two aspects, transmission overhead and
calculation overhead. Transmission overhead is caused by pig-
gybacking RAN information in ACK segment. In our experi-
ment, 4 floats, which indicate user-received signal strength,
PRB available ratio, and exact timestamp when they are
collected respectively, need to be piggybacked in each ACK
segment. Specifically, assuming each ACK segment can also
carry useful data, and the maximum transmission unit (MTU)
is 1500 bytes, it takes 16 bytes to piggyback RAN information,
causing only 1.1% overhead and can be accepted. Calculation
overhead is caused by the forward calculation of neural
network. With an open-source tool “ptflops” [32], we find
that DRL-3R only takes 659.25k multiply-accumulate (MAC)
in each decision process in our experiment, which is quite
small for mainstream graphics or central processing unit (GPU,
CPU).

D. Test Scenarios and Results

In this part, we present key performance indicators, includ-
ing average per-flow throughput, RTT and fairness index,
to verify the performance of DRL-3R in several representative
environments.

1) Scenario 1: In this scenario, we show how the bottleneck
bandwidth affects the performance of DRL-3R. We set the
random loss rate as 1% and the propagation delay of CN
as 50 ms. Note that the random loss rate is the same for both
CN and RAN, both downlink and uplink. The corresponding
results are shown in Fig. 4. It can be observed that when
the bottleneck bandwidth is relatively high, DRL-3R can
achieve a high throughput while maintaining a lower RTT.
With the decrease of bottleneck bandwidth, DRL-3R maintains
a reasonable throughput, while significantly reducing RTT.
Specifically, when the bottleneck bandwidth is 93.4 Mbps,
DRL-3R achieves 54%, 2%, 31%, 7% and 36% improve-
ment on throughput over TCP Reno, TCP Westwood, TCP
Cubic, TCP BBR and DRL-CC respectively, and also leads
about 20 ms reduction to the RTT compared with TCP
Westwood and TCP BBR. When the bottleneck bandwidth is
23.4 Mbps, although DRL-3R only maintains similar through-
put compared with baselines, it achieves superior performance
on RTT, reducing 129 ms, 116 ms, 146 ms, 43 ms and 51 ms
on RTT over TCP Reno, TCP Westwood, TCP Cubic, TCP

Authorized licensed use limited to: Zhejiang University. Downloaded on January 16,2022 at 12:55:42 UTC from IEEE Xplore. Restrictions apply.

224 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 1, JANUARY 2022

Fig. 4. Performance of DRL-3R and baselines in Scenario with steady network (Scenario 1), in which bottleneck bandwidth changes, and random loss rate
and CN propagation delay remain constant. “DRL-3R (Avg)” is the average performance of DRL-3R, and “DRL-3R (Best)” is DRL-3R’s best performance
in our experiment.

Fig. 5. Performance of DRL-3R and baselines in Scenario with steady network (Scenario 2), in which random loss rate changes, and bottleneck bandwidth
and CN propagation delay remain constant. “DRL-3R (Avg)” is the average performance of DRL-3R, and “DRL-3R (Best)” is DRL-3R’s best performance
in our experiment.

BBR and DRL-CC respectively. In summary, DRL-3R signifi-
cantly outperforms other baselines. Besides, we also calculate
the fairness index by calculating Jain’s Fairness Index [33]
of throughput at each time-step and averaging on all time-
steps. It can be observed that DRL-3R achieves a higher
fairness index among all cases. In this scenario, we retrain the
RAN information prediction network and reward redistribution
network in every case, and cut the weight of throughput in half
when the downlink bottleneck bandwidth is relatively low to
better fit the environment.

It can be found that DRL-CC can also outperforms some
baselines. However, its lower RTT comes at a cost of lower
throughput when the bottleneck bandwidth is relatively higher.
This is because DRL-CC can only adjust the cwnd of one
TCP flow at each time-step, which makes it inefficient on
improving cwnd when a large amount of TCP flows exist.
On the contrary, DRL-3R decides the action on each TCP
flow in a round-robin manner, i.e., it decides actions of many
TCP flows one by one, which enables DRL-3R to control the
cwnd of many TCP flows in each time step, and increases
the controlling efficiency of DRL-3R. Furthermore, when the
bottleneck bandwidth decrease to 23.4 Mbps, another short-
coming of DRL-CC emerges that it tries to increase throughput
while ignoring RTT. On the contrary, DRL-3R learns a smarter
policy, maintaining a proper cwnd, as increasing the cwnd too
much contributes trivially but leads to higher RTT. Comparing
the performance of DRL-3R and DRL-CC, DRL-3R achieves
a much better network utilization, achieving a significantly

higher throughput when the bandwidth is high. In spite of a
slight increase in RTT, we argue that DRL-3R still gets an RTT
level similar to TCP Reno’s. In other words, this increase can
be seen as an acceptable cost to increase throughput. There-
fore, we argue that DRL-3R achieves superior performance.

2) Scenario 2: In this scenario, we show how the random
loss rate affects the performance of DRL-3R. We set the
bottleneck bandwidth as 116.8 Mbps and the propagation delay
of CN as 50 ms. Note that we pre-train the RAN information
prediction network and reward redistribution network with
bottleneck bandwidth as 116.8 Mbps, CN propagation delay
as 50 ms and random loss rate as 1%. We don’t retrain
the pre-trained networks for each random loss rate, since the
increase of random loss rate is often caused by unpredictable
severe faults in practical network. Thus, we need the same
group of pre-trained networks to deal with a series of possible
random loss rate. The corresponding results are shown in
Fig 5. It demonstrates that when the random loss rate is
relatively small (i.e., 1%), the throughput of DRL-3R is similar
to TCP Westwood’s and BBR’s, but DRL-3R achieves a
higher fairness index and significantly smaller RTT. With the
increase of random loss rate, DRL-3R significantly increases
the throughput while maintaining a reasonable RTT. Specifi-
cally, when the random loss rate is 1%, DRL-3R leads to 54%,
27%, and 38% improvement on throughput over TCP Reno,
TCP Cubic and DRL-CC respectively. Although DRL-3R
doesn’t achieve significant throughput improvement compared
with TCP Westwood and TCP BBR, it saves about 25 ms on

Authorized licensed use limited to: Zhejiang University. Downloaded on January 16,2022 at 12:55:42 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: RAN INFORMATION-ASSISTED TCP CONGESTION CONTROL USING DRL WITH REWARD REDISTRIBUTION 225

Fig. 6. Performance of DRL-3R and baselines in Scenario with steady network (Scenario 3), in which CN propagation delay changes, and bottleneck bandwidth
and random loss rate remain constant. “DRL-3R (Avg)” is the average performance of DRL-3R, and “DRL-3R (Best)” is DRL-3R’s best performance in our
experiment.

RTT. When the random loss rate is 5%, DRL-3R achieves a
much better performance, leading to 79%, 60%, 49%, 52%
and 5% improvement on throughput over TCP Reno, TCP
Westwood, TCP Cubic, TCP BBR and DRL-CC respectively,
with an RTT similar to TCP Cubic. Note that DRL-3R
always get better performance in terms of fairness index
compared with most baselines. It can be also observed that
the performance of DRL-CC is not as good as DRL-3R in
most cases. DRL-CC’s fairness is competitive with DRL-
3R’s, but its worse performance makes its reasonable fairness
meaningless. Besides, DRL-3R is more robust to the change of
random loss rate. Meanwhile, it can be observed that fairness
index decreases quickly with the increasing of random loss
rate. When packet loss happens in a TCP flow, the throughput
of this TCP flow would decrease significantly before it turns
stable. With the increase of random loss rate, increasingly
more TCP flows’ throughput would decrease while the others
remain high, making fairness index decrease. In conclusion,
DRL-3R achieves a superior performance on throughput and
RTT while maintaining a better fairness compared with most
baselines.

3) Scenario 3: In this scenario, we show how the propaga-
tion delay of CN affects the performance of DRL-3R. We set
the random loss rate as 1% and the bottleneck bandwidth of
CN as 116.8 Mbps. Moreover, we retrain the pre-trained neural
networks while changing the propagation delay of CN. The
corresponding results are shown in Fig. 6. We can see that
DRL-3R achieves a high throughput and much lower RTT
compared with baselines. Specifically, when the propagation
delay of CN is set as 60 ms, DRL-3R achieves 39% and
21% improvement on throughput compared with TCP Reno
and TCP Cubic respectively, while maintaining a similar
throughput with TCP BBR and reducing 6 ms, 28 ms, 13 ms
and 23 ms on RTT compared with TCP Reno, TCP Westwood,
TCP Cubic, TCP BBR respectively. When the propagation
delay of CN is set as 75 ms, DRL-3R achieves 29%, 12%,
4% and 36% improvement on throughput compared with TCP
Reno, TCP Cubic, TCP BBR and DRL-CC respectively. It also
reduce 7 ms, 19 ms, 9 ms and 17 ms on RTT compared with
TCP Reno, TCP Westwood, TCP Cubic, TCP BBR respec-
tively. This scenario shows that with the increasing of CN
propagation delay, DRL-3R also achieves higher throughput
while significantly reducing RTT, which implies that DRL-3R

outperforms DRL-CC. Furthermore, DRL-3R achieves a better
fairness compared with baselines in all cases.

4) Scenario 4: In this scenario, we present the performance
of DRL-3R in a network with dynamic bottleneck bandwidth.
We set the propagation delay as 50 ms and the random loss
rate as 1%. We assume the bottleneck bandwidth is randomly
chosen in 116.8 Mbps, 93.4 Mbps and 70.1 Mbps, with
changing frequency as 10 Hz. The corresponding results are
shown in Table I. It can be observed that the performance gain
of DRL-3R is quite similar to that in Scenario 1. Specifically,
DRL-3R achieves higher throughput compared with TCP
Reno, TCP Westwood, TCP Cubic, TCP BBR and DRL-CC,
and maintains a reasonable RTT. It also achieves a better
fairness compared with baselines.

5) Scenario 5: In this scenario, we present the performance
of DRL-3R in a network with dynamic loss rate. We set the
bottleneck bandwidth as 116.8 Mbps and the propagation delay
as 50 ms. We assume the random loss rate is randomly chosen
among 1%, 3% and 5%, with changing frequency as 10 Hz.
The corresponding results are shown in Table I. It can be
observed from Table I that the throughput of DRL-3R sig-
nificantly outperforms other baselines. Specifically, DRL-3R
achieves 63%, 38%, 41%, 28% and 4% improvement on
throughput compared with TCP Reno, TCP Westwood, TCP
Cubic, TCP BBR and DRL-CC respectively, and reduces
about 20-40 ms on RTT. Also note that DRL-3R always
achieves a better fairness compared with baselines. In other
words, DRL-3R is more robust to the change of random
loss rate compared with baselines, improving the throughput
while reducing the RTT. It can also maintain a better fairness
compared with baselines.

6) Scenario 6: In this scenario, we present the performance
of DRL-3R in a network with dynamic CN propagation delay.
We set the random loss rate as 1% and the bottleneck band-
width as 116.8 Mbps. We assume the CN propagation delay is
randomly chosen in integers in [50 ms, 60 ms], with changing
frequency as 10 Hz. The corresponding results in Table I leads
to similar conclusion as to those in Scenario 3. Specifically,
DRL-3R achieves an improvement on throughput compared
with baselines. Specifically, DRL-3R achieves 64%, 9%, 37%,
14% and 42% improvement on throughput compared with
TCP Reno, TCP Westwood, TCP Cubic, TCP BBR and
DRL-CC respectively. DRL-3R also achieves a similar RTT

Authorized licensed use limited to: Zhejiang University. Downloaded on January 16,2022 at 12:55:42 UTC from IEEE Xplore. Restrictions apply.

226 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 1, JANUARY 2022

TABLE I

PERFORMANCE COMPARISON OF DRL-3R AND BASELINES IN SCENARIO 4, 5, 6, FTP AND COMPETITION1

compared with TCP BBR and a high fairness among all TCP
flows. Although DRL-CC outperforms DRL-3R on fairness, its
low throughput makes its higher fairness index meaningless.
In conclusion, in an environment with dynamic CN propaga-
tion delay, DRL-3R achieves a higher throughput with similar
RTT and a better fairness compared with baselines.

E. Performance Sensitivity Analyses

1) Friendliness: Friendliness is an important feature of
congestion control method and we use “friendliness” to judge
whether a new method is compatible with previous ones,
leaving enough resources for previous methods. To discuss
the friendliness of DRL-3R, we implement both DRL-3R and
TCP Reno in a scenario similar to Scenario I. The downlink
bottleneck bandwidth is 116.8 Mbps. 15 users implement
DRL-3R and other 15 flows implement TCP Reno. Experiment
results show that DRL-3R achieves an average throughput
of 1.71 Mbps, and 1.10 Mbps for TCP Reno, similar to the
average throughput when all TCP flows are controlled by TCP
Reno, which implies that TCP Reno is allocated reasonable
resources and DRL-3R doesn’t occupy too much resources of
TCP Reno. Finally, we can conclude that DRL-3R is quite
friendly to previous methods.

2) Application in FTP Service Model: In our previous
experiments, we set the server working in a “bulky” manner.
To show the performance of DRL-3R in a more realistic
environment, we construct Scenario FTP which is similar
to Scenario I, and apply FTP service model to justify the
effectiveness of DRL-3R under FTP. We assume that the server
has infinite files to transmit. The size of each file follows
geometry distribution with p = 0.05, and limited in 1 − 100
segments. The reading time of user follows Pareto distribution
(i.e., p(x) = ama

xa+1) with a = 1.1, m = 10, and is limited
in 10 − 100 ms. The downlink bottleneck bandwidth is set
as 116.8 Mbps. Experiment results are shown in Table I.
It demonstrates that DRL-3R also achieves a higher throughput
with low RTT compared with other methods, and significantly

improve throughput compared with DRL-CC. It also achieves
high fairness.

3) Performance Within Fully-Competition Environment: In
our previous experiments, the maximum sending rate of each
TCP flow is limited as 23.4 Mbps. To allow all TCP flows
competing for bandwidth with no limitation, we construct
Scenario Competition, in which the maximum sending rate
of each TCP flow is not limited, and the downlink outbound
bandwidth of the server on each path is very high, allowing
all TCP flows sending data as fast as they wish. Experiment
results are shown in Table I. We can find that DRL-3R can still
achieve superior performance compared with other methods,
achieving higher throughput and fairness while maintaining
lower RTT, demonstrating that DRL-3R can still work in fully-
competition environment.

4) Impact of RAN Information Prediction and Reward
Redistribution: In this paper, we apply RAN information
prediction network, whose accuracy need to be discussed.
Firstly, it should be clarified that the proposed DRL-3R does
not require an extremely high accuracy on RAN information
prediction, since the purpose of RAN information is to inform
the sender of the tendency of RAN to become a bottleneck.
In our experiment, the MSE of PRB available ratio and
user-received signal strength prediction network are around
0.006 and 7 × 10−7, which is not extremely high accuracy,
but fairly sufficient. To further test the effect of accuracy,
we apply DRL-3R with under-fitting and over-fitting pre-
trained RAN information prediction network in Scenario I with
downlink bottleneck bandwidth as 93.4 Mbps. Experiment
results are depicted in Fig. 7 and it can be seen that the fitting
status barely exert influences on the performance. Meanwhile,
to demonstrate the necessity and effectiveness of reward
redistribution, we compare the performance of DRL-3R with
and without reward redistribution in Scenario I with downlink
bottleneck bandwidth as 116.8 Mbps. Similar comparison
is also conducted for DRL-3R, and DRL-3R without RAN
information only and DRL-3R without RAN information and
reward redistribution to show the effect of RAN information.

Authorized licensed use limited to: Zhejiang University. Downloaded on January 16,2022 at 12:55:42 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: RAN INFORMATION-ASSISTED TCP CONGESTION CONTROL USING DRL WITH REWARD REDISTRIBUTION 227

Fig. 7. Performance comparison of DRL-3R with different components. “bw” indicates the downlink bottleneck bandwidth the experiment running in. “Org”
indicates the original DRL-3R. “Overfit” and “Underfit” indicate DRL-3R with over-fitting and under-fitting pre-trained RAN information prediction network,
and same reward redistribution network. Note that the PRB information prediction network used in “Overfit” is de-facto not over-fitting as it doesn’t show
the tendency of over-fitting until the end of training. “No-RR” indicates DRL-3R without reward redistribution. “No-RAN” indicates DRL-3R without RAN
information. “No-RAN-RR” indicates DRL-3R without reward redistribution and RAN information.

Fig. 8. A comparison of average throughput and average RTT among DRL-
3R with different parameter settings. “Original Param” indicates the original
parameter setting of DRL-3R, in which γ = 0.99, η = 0.8, γu = 0.2,
δu = 0.1, and α = 0.5. For any other parameter setting, these parameters
remain identical except the specific parameter pointed out in its legend.

It can be observed from Fig. 7 that after including RAN
information, the agent effectively avoids the RAN-induced
congestion by slightly reducing the throughput, but signifi-
cantly reduces RTT. On the other hand, the introduction of
reward redistribution can increase about 5% throughput with-
out worsening the RTT. In other words, we can safely come to
a conclusion that the incorporation of RAN information and
reward redistribution serves to improve network performances.
Besides, it can also be observed that although DRL-3R would
suffer from utility degradation when RAN information is not
available, it can still work well compared with other baselines
and well adapt to the environment, proving that DRL-3R has
good generality.

5) Effect of Parameters: In this paper, we apply several
parameters on DRL-3R. The most important parameters of
DRL-3R include γ, η, γu, δu and α, which directly control
the performance of DRL-3R. We test DRL-3R with several
different parameter settings. The scenario we test DRL-3R
with different parameters in is similar to Scenario I with down-
link bottleneck bandwidth as 116.8 Mbps. The experiment

result is shown in Fig 8. For discount factor γ defined
in Equ. (1), experiment results have demonstrated that it
doesn’t have significant effect on the performance of DRL-
3R. For decay coefficient η defined in Equ. (2), it is positive
correlated with throughput and negative with RTT. This is
because the changing of η equals changing the importance
of throughput in utility function. For fairness parameter α
defined in Equ. (4), we set that αt = αr = α, and its
increase leads to a higher throughput with a significantly high
RTT, while its decrease produces an extremely low throughput
with very low RTT. As the order of magnitude of throughput
is significantly higher than that of RTT, the decrease of α
would increase the long-term throughput processed by α-
fairness function and decrease the RTT. In other words, the
changing of α affects the equilibrium between throughput
and RTT. For weights γu and δu

5 for user u defined in
Equ. (3), experiment results prove the effectiveness of both
of them, which control the relative importance of throughput
and RTT. For simplicity, the γu and δu remain same for all
users.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed DRL-3R, a DRL
based congestion control method. In particular, DRL-3R has
incorporated RAN information for congestion control, and
embedded a specifically-tailored RAN information prediction
module. DRL-3R has relaxed the implicit assumption in
other DRL-based congestion control methods by introducing a
reward redistribution module, which could be widely applied
for communication and networking scenarios with commonly
delayed feedback for consecutive actions. Experiment results
have demonstrated that DRL-3R yields superior performance
in terms of throughput and RTT in various environments.
DRL-3R also achieves higher fairness compared with base-
lines. In our future work, we will explore the application of
other kinds of RAN information, implement DRL-3R on more
realistic platform (e.g. ns-3), compare DRL-3R with more
recent methods, investigate the performance of DRL-3R in

5During implementation, we use two constants, which remain unchanged in
all experiments, to linearly normalize throughput and RTT respectively while
calculating the utility function, to make them in similar order of magnitude
and adjustment of γu and δu more convenient. This trick equals multiplying
γu and δu by two constants respectively.

Authorized licensed use limited to: Zhejiang University. Downloaded on January 16,2022 at 12:55:42 UTC from IEEE Xplore. Restrictions apply.

228 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 1, JANUARY 2022

more scenarios (e.g. wired network, or other kinds of wireless
network) and upgrade DRL-3R with multi-agent DRL methods
to improve its generality and scalability.

APPENDIX A
PROOF OF EQUATION (10)

We define an SDP with delayed reward M̂ represented by
(S,A,R, p) with state-action sequence (s0,a0), · · · , (sT , aT),
starting at time-step 0, ending at time-step T , with T +1 time-
steps. At time-step T +1, a delayed reward R̂T+1 is returned.

According to Equ. (5) and Equ. (8), we have:

E[Rt+1|(st−1,at−1), (st,at)] = Q̂π(st,at) − Q̂π(st−1, at−1)

= Q̂(st,at) − Q̂(st−1, at−1)

= g(Δ0:t) − g(Δ0:t−1)

=
t�

i=0

hi −
t−1�
i=0

hi

= ht (13)

Finally, we have the conclusion that Equ. (10) has been
proved.

APPENDIX B
PROOF OF THEOREM 1

We define an SDP with delayed reward M̂ represented by
(S,A,R, p) with state-action sequence (s0,a0), · · · , (sT , aT),
starting at time-step 0, ending at time-step T , with T + 1
time-steps. We cut the whole state-action sequence into sev-
eral shorter sequences with constant length L. Each shorter
sequence start at time-step t ending at time-step t + L − 1,
receiving delayed reward R̂t+L. Assume that T + 1 can be
divided by L with no remainder. The new SDP M constructed
by reward redistribution (described in Section IV-C) from M̂,
has the same state space S, action space A and state-transition
probability p(st+1|st,at) but different reward distribution with
M̂. The reward is redistributed to each state-action pair
(st,at) as Rt+1.

Definition 1: the return at time-step t is defined as the
cumulative reward starting at time-step t. For SDP M̂ and
M, the return can be described as Ĝt =

�∞
i=0 R̂t+i+1 and

Gt =
�∞

i=0 Rt+i+1 respectively.
Proposition 1: For each sequence (st,at), · · · , (sT , aT),

where t is the time-step when a shorter sequence starts, we can
get the same expected return for any policy π with delayed
reward or redistributed reward.

Proof: For M̂, we have

Eπ[Ĝt|(st,at), · · · , (sT ,aT)]

= Eπ [
∞�

i=0

R̂t+i+1|(st,at), · · · , (sT ,aT)]

= Eπ [

T−t+1
L�

n=1

R̂t+nL|(st,at), · · · , (sT ,aT)] (14)

For M, we have

Eπ [Gt|(st, at), · · · , (sT , aT)]

= Eπ[
∞�

i=0

Rt+i+1|(st, at), · · · , (sT , aT)]

= Eπ[
T−t�
i=0

Rt+i+1|(st, at), · · · , (sT , aT)] (15)

According to the reward redistribution described
in this paper, for each shorter sequence
(st, at), · · · , (st+L−1, at+L−1), we have

R̂t+L =
L�

i=1

Rt+i (16)

because our reward redistribution ensures that the sum of
redistributed rewards of each sequence equals the delayed
reward of this sequence. Similarly

R̂t+nL = Rt+(n−1)L+1 + · · · + Rt+nL (17)

In the end,

Eπ[

T−t+1
L�

n=1

R̂t+nL|(st, at), · · · , (sT , aT)]

= Eπ[
T−t�
i=0

Rt+i+1|(st, at), · · · , (sT ,aT)] (18)

Finally, we have:

Eπ[Ĝt|(st, at), · · · , (sT , aT)]=Eπ [Gt|(st, at), · · · , (sT ,aT)]
(19)

Proposition 2: M̂ and M share same state-action value
function.

Proof: According to the definition, the state-action value
function of M̂ and M can be written as Q̂π(s,a) =
Eπ[Ĝt|(s = st, a = at)] and Qπ(s, a) = Eπ[Gt|(s = st,a =
at)].

Clearly:

Q̂π(s, a)
= Eπ[Ĝt|(s = st, a = at)]

=
�

(st+1,at+1),··· ,(sT ,aT)

pπ[(st+1, at+1), · · · , (sT , aT)|(st,at)] ·

Eπ[Ĝt|(st, at), · · · , (sT , aT)]

=
�

(st+1,at+1),··· ,(sT ,aT)

pπ[(st+1, at+1), · · · , (sT , aT)|(st,at)] ·

Eπ[Gt|(st, at), · · · , (sT , aT)]
= Eπ[Gt|(s = st, a = at)]
= Qπ(s, a) (20)

So, M̂ and M share same state-action value function.
The optimal policy is defined as the policy that is better

than or equal to other policies on state-action value function
or state value function. The optimal policy for M, i.e., π∗,
maximizes Qπ(s, a), and optimal policy for M̂, i.e., π̂∗,
maximizes Q̂π(s, a). As Q̂π(s, a) = Qπ(s, a) which is proved
by Prop. 2, we have the conclusion that π∗ = π̂∗.

Authorized licensed use limited to: Zhejiang University. Downloaded on January 16,2022 at 12:55:42 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: RAN INFORMATION-ASSISTED TCP CONGESTION CONTROL USING DRL WITH REWARD REDISTRIBUTION 229

REFERENCES

[1] M. Chen, R. Li, Z. Zhao, and H. Zhang, “RAN information-assisted
TCP congestion control via DRL with reward redistribution,” in Proc.
IEEE Int. Conf. Commun. Workshops (ICC Workshops), Montreal, QC,
Canada, Jun. 2021, pp. 1–7.

[2] V. Jacobson, “Berkeley TCP evolution from 4.3-Tahoe to 4.3-Reno,”
in Proc. Internet Eng. Task Force, Vancouver, BC, Canada, Sep. 1990,
pp. 365–374.

[3] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine learning
for networking: Workflow, advances and opportunities,” IEEE Netw.,
vol. 32, no. 2, pp. 92–99, Mar./Apr. 2018.

[4] L. Zhang, Y. Cui, M. Wang, Z. Yang, Y. Jiang, and Y. Cui, “Machine
learning for internet congestion control: Techniques and challenges,”
IEEE Internet Comput., vol. 23, no. 5, pp. 59–64, Sep. 2019.

[5] F. Lu, H. Du, A. Jain, G. M. Voelker, A. C. Snoeren, and A. Terzis,
“CQIC: Revisiting cross-layer congestion control for cellular networks,”
in Proc. 16th Int. Workshop Mobile Comput. Syst. Appl., Santa Fe, NM,
USA, Feb. 2015, pp. 45–50.

[6] Y. Xie, F. Yi, and K. Jamieson, “PBE-CC: Congestion control
via endpoint-centric, physical-layer bandwidth measurements,” 2020,
arXiv:2002.03475.

[7] J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner,
J. Brandstetter, and S. Hochreiter, “Rudder: Return decomposition for
delayed rewards,” in Proc. Adv. Neural Inf. Process. Syst., Vancouver,
BC, Canada, Dec. 2019.

[8] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, “TCP
westwood: Bandwidth estimation for enhanced transport over wireless
links,” in Proc. 7th Annu. Int. Conf. Mobile Comput. Netw. (MobiCom),
Rome, Italy, Jul. 2001, pp. 287–297.

[9] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operat. Syst. Rev., vol. 42, no. 5, pp. 64–74,
2008.

[10] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” Commun. ACM, vol. 60,
no. 2, pp. 58–66, 2017.

[11] Z. Xu, J. Tang, C. Yin, Y. Wang, and G. Xue, “Experience-driven
congestion control: When multi-path TCP meets deep reinforcement
learning,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1325–1336,
Jun. 2019.

[12] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2018.

[13] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[14] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in Proc. Int. Conf. Learn. Represent., San Juan, Puerto Rico,
May 2016.

[15] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional per-
spective on reinforcement learning,” in Proc. Int. Conf. Mach. Learn.,
Sydney, NSW, Australia, Aug. 2017, pp. 449–458.

[16] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Frcitas, “Dueling network architectures for deep reinforcement
learning,” in Proc. Int. Conf. Mach. Learn., New York, NY, USA,
Jun. 2016, pp. 2939–2947.

[17] Y. Hua, R. Li, Z. Zhao, X. Chen, and H. Zhang, “GAN-powered
deep distributional reinforcement learning for resource management
in network slicing,” IEEE J. Sel. Areas Commun., vol. 38, no. 2,
pp. 334–349, Feb. 2020.

[18] Z. Wang et al., “Sample efficient actor-critic with experience replay,” in
Proc. Int. Conf. Learn. Represent., Toulon, France, Apr. 2017.

[19] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. Int. Conf. Mach. Learn., vol. 5, Stockholm, Sweden,
Jul. 2018, pp. 2976–2989.

[20] R. Li, C. Wang, Z. Zhao, R. Guo, and H. Zhang, “The LSTM-based
advantage actor-critic learning for resource management in network
slicing with user mobility,” IEEE Commun. Lett., vol. 24, no. 9,
pp. 2005–2009, Sep. 2020.

[21] K. Xiao, S. Mao, and J. K. Tugnait, “TCP-Drinc: Smart congestion
control based on deep reinforcement learning,” IEEE Access, vol. 7,
pp. 11892–11904, 2019.

[22] S. Emara, B. Li, and Y. Chen, “Eagle: Refining congestion control
by learning from the experts,” in Proc. IEEE Conf. Comput. Commun.
(IEEE INFOCOM), Jul. 2020, pp. 676–685.

[23] L. Cui, Z. Yuan, Z. Ming, and S. Yang, “Improving the congestion
control performance for mobile networks in high-speed railway via
deep reinforcement learning,” IEEE Trans. Veh. Technol., vol. 69, no. 6,
pp. 5864–5875, Jun. 2020.

[24] L. Zhang, K. Zhu, J. Pan, H. Shi, Y. Jiang, and Y. Cui, “Reinforcement
learning based congestion control in a real environment,” in Proc.
29th Int. Conf. Comput. Commun. Netw. (ICCCN), Honolulu, HI, USA,
Aug. 2020, pp. 1–9.

[25] B. He et al., “DeepCC: Multi-agent deep reinforcement learning con-
gestion control for multi-path TCP based on self-attention,” IEEE
Trans. Netw. Service Manage., early access, Jun. 29, 2021, doi:
10.1109/TNSM.2021.3093302.

[26] M. Bachl, T. Zseby, and J. Fabini, “Rax: Deep reinforcement learning
for congestion control,” in Proc. IEEE Int. Conf. Commun. (ICC),
May 2019, pp. 1–6.

[27] X. Nie et al., “Dynamic TCP initial windows and congestion control
schemes through reinforcement learning,” IEEE J. Sel. Areas Commun.,
vol. 37, no. 6, pp. 1231–1247, Jun. 2019.

[28] W. Li, H. Zhang, S. Gao, C. Xue, X. Wang, and S. Lu, “SmartCC:
A reinforcement learning approach for multipath TCP congestion control
in heterogeneous networks,” IEEE J. Sel. Areas Commun., vol. 37,
no. 11, pp. 2621–2633, Nov. 2019.

[29] K. Winstein and H. Balakrishnan, “TCP ex machina: Computer-
generated congestion control,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 4, pp. 123–134, 2013.

[30] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst. Red Hook, NY,
USA: Curran Associates, 2019, pp. 8026–8037.

[31] P. Gawłowicz and A. Zubow, “Ns-3 meets OpenAI gym: The playground
for machine learning in networking research,” in Proc. 22nd Int. ACM
Conf. Modeling, Anal. Simulation Wireless Mobile Syst. (MSWIM),
Miami Beach, FL, USA, Nov. 2019, pp. 113–120.

[32] V. Sovrasov. (2019). Flops Counter for Convolutional Networks
in PyTorch Framework. [Online]. Available: https://github.com/
sovrasov/flops-counter.pytorch/

[33] R. Jain, The Art of Computer Systems Performance Analysis: Techniques
For Experimental Design, Measurement, Simulation, and Modeling.
Hoboken, NJ, USA: Wiley, 1991.

Minghao Chen (Graduate Student Member, IEEE)
received the B.E. degree from the School of Marine
Science and Technology, Northwestern Polytech-
nical University, Xi’an, China, in 2019. He is
currently pursuing the master’s degree with the
College of Information Science and Electronic
Engineering, Zhejiang University, Hangzhou, China.
His research interests currently focus on deep rein-
forcement learning and computer communication
networks.

Rongpeng Li (Member, IEEE) is currently an Asso-
ciate Professor with the College of Information
Science and Electronic Engineering, Zhejiang Uni-
versity, Hangzhou, China. He was a Research Engi-
neer with the Wireless Communication Laboratory,
Huawei Technologies Company, Ltd., Shanghai,
China, from August 2015 to September 2016.
He was a Visiting Scholar with the Department of
Computer Science and Technology, University of
Cambridge, Cambridge, U.K., from February 2020
to August 2020. His research interest currently

focuses on networked intelligence for communications evolving (NICE).
He received the sponsorship “National Post-Doctoral Program for Innovative
Talents” in 2016. He serves as an Editor for China Communications.

Authorized licensed use limited to: Zhejiang University. Downloaded on January 16,2022 at 12:55:42 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNSM.2021.3093302

230 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 1, JANUARY 2022

Jon Crowcroft (Fellow, IEEE) received the degree
in physics from the Trinity College, University of
Cambridge, Cambridge, U.K., in 1979, and the
M.Sc. degree in computing and the Ph.D. degree
from University College London, London, U.K.,
in 1981 and 1993, respectively. Since 2001, he has
been the Marconi Professor of communications sys-
tems with the Computer Laboratory. He has worked
in the area of Internet support for multimedia com-
munications for more than 30 years. Three main top-
ics of interest have been scalable multicast routing,

practical approaches to traffic management, and the design of deployable
end-to-end protocols. His current research interests include opportunistic
communications, social networks, and techniques and algorithms to scale
infrastructure-free mobile systems. He is a fellow of the Royal Society, the
ACM, the British Computer Society, the IET, and the Royal Academy of
Engineering.

Jianjun Wu is the Chief Researcher and the
Director of the Future Network Laboratory, Huawei
Technologies. He is leading the future network
architecture design in Huawei.

Zhifeng Zhao (Member, IEEE) received the B.E.
degree in computer science, the M.E. degree in
communication and information systems, and the
Ph.D. degree in communication and information
systems from the PLA University of Science
and Technology, Nanjing, China, in 1996, 1999,
and 2002, respectively. From 2002 to 2004,
he acted as a Post-Doctoral Researcher with
Zhejiang University, Hangzhou, China, where
his researches were focused on multimedia
next-generation networks (NGNs) and soft-

switch technology for energy efficiency. From 2005 to 2006, he acted as a

Senior Researcher with the PLA University of Science and Technology, where
he performed research and development on advanced energy-efficient wireless
router, ad-hoc network simulator, and cognitive mesh networking test-bed.
From 2006 to 2019, he was an Associate Professor with the College of Infor-
mation Science and Electronic Engineering, Zhejiang University. Currently,
he is with the Zhejiang Lab, Hangzhou. His research areas include software
defined networks (SDNs), wireless network in 6G, computing networks, and
collective intelligence. He is the Symposium Co-Chair of ChinaCom 2009
and 2010. He is the Technical Program Committee (TPC) Co-Chair of the
10th IEEE International Symposium on Communication and Information
Technology (ISCIT 2010).

Honggang Zhang (Senior Member, IEEE) was an
Honorary Visiting Professor with the University of
York, York, U.K., and an International Chair Pro-
fessor of excellence with the Université Européenne
de Bretagne and Supélec, France. He is a Full
Professor with the College of Information Science
and Electronic Engineering, Zhejiang University,
Hangzhou, China. He has coauthored and edited
two books: Cognitive Communications: Distributed
Artificial Intelligence (DAI), Regulatory Policy &
Economics, Implementation (John Wiley & Sons)

and Green Communications: Theoretical Fundamentals, Algorithms and
Applications (CRC Press), respectively. His research interests include cogni-
tive radio and networks, green communications, mobile computing, machine
learning, artificial intelligence, and the Internet of Intelligence (IoI). He is a
co-recipient of the 2021 IEEE Communications Society Outstanding Paper
Award and the 2021 IEEE INTERNET OF THINGS JOURNAL (IoT-J) Best
Paper Award. He was the leading Guest Editor for the Special Issues on
Green Communications of the IEEE Communications Magazine. He served as
a Series Editor for the IEEE Communications Magazine (Green Communica-
tions and Computing Networks Series) from 2015 to 2018 and the Chair of the
Technical Committee on Cognitive Networks of the IEEE Communications
Society from 2011 to 2012. He is the Associate Editor-in-Chief of China
Communications.

Authorized licensed use limited to: Zhejiang University. Downloaded on January 16,2022 at 12:55:42 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

