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AbstrAct
The vision for 6G networks is to offer per-

vasive intelligence and internet of intelligence, 
in which the networks natively support artificial 
intelligence (AI), empower smart applications 
and scenarios in various fields, and create a 
“ubiquitous-intelligence” world. In this vision, the 
traditional session-oriented architecture cannot 
achieve flexible per-user customization, ultimate 
performance, security and reliability required by 
future AI services.

In addition, users’ requirements for person-
alized AI services may become a key feature 
in the near future. However, the traditional AI 
deployment based on cloud/mobile edge 
computing (MEC) has limitations such as low 
throughput, long delay, poor privacy, and high 
carbon emissions, resulting in the inability to pro-
vide personalized quality of experience (QoE) 
assurance. By integrating AI in the network, the 
network AI has more advantages than cloud/MEC 
AI, such as better QoS assurance, lower latency, 
less transmission and computing overhead, and 
stronger security and privacy. Therefore, this arti-
cle proposes the task-oriented native-AI network 
architecture (TONA), to natively support the net-
work AI. By introducing task control and quality 
of AI services (QoAIS) assurance mechanisms at 
the control layer of 6G, the TONA can achieve 
the finest service granularity at the task level for 
guaranteeing every user’s personalized QoE.

IntroductIon
The traditional communications system is 
session-oriented and typically provides connec-
tions between specific terminals or between 
terminals and application servers. Its net-
work architecture offers a complete lifecycle 
management mechanism (such as creation, 
modification, deletion, and anchor transfer of 
end-to-end (E2E) communication tunnels) and 
quality of service (QoS) assurance for sessions, 

aiming to provide connections for data trans-
mission, support user mobility, and ensure user 
experience. To achieve the 6G vision of per-
vasive intelligence and internet of intelligence, 
support for native AI at the 6G network archi-
tecture level is necessary [1], [2], [3]. Unlike 
the traditional communication services, AI is a 
data- and computing-intensive process, which 
requires ubiquitous distribution, high real-time 
performance, and high security and privacy—
aspects that 6G needs to support. 

To achieve the 6G vision of pervasive intelli-
gence and internet of intelligence, the challenges 
and solutions have been provided in lots of articles 
[4], [5], [6], [7], they think the network archi-
tecture in 6G requires significant transformation 
compared to traditional communications systems, 
as normally the system architecture can only be 
re-designed in the initial stage of one generation 
of radio network, and will keep unchanged in 
later releases. Such transformation will involve the 
introduction of new resources—computing, data, 
and algorithms—required by AI, and the design of 
real-time management and control mechanisms 
to support multi-node collaboration and heteroge-
neous resources collaboration, as well as security 
and privacy mechanisms for distributed AI work-
flows across multiple nodes (including terminals 
and network nodes). 

Based on the proceeding transformation, this 
article further proposes a task-oriented native-AI 
network architecture (TONA) to meet personal-
ized AI service demand and requirements. This 
article mainly:
1. Introduces three-layer logical architecture of 

task management and control system, and 
designs the task lifecycle management pro-
cedures, which include the collaboration of 
multi-dimension heterogeneous resources 
(communication, computing, data, and algo-
rithm) and multi-node at the control layer. 

2. Defines task-specific QoAIS indicators for 
the mapping from Service Level Agreement 
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(SLA) indicators—e.g., service requirement 
zone (SRZ) and user satisfaction ratio 
(USR)—to QoAIS indicators, and discusses 
task-level QoS assurance to meet individual 
requirements of different users.

3. Compares the network AI and cloud/mobile 
edge computing (MEC) in terms of QoAIS 
indicators. Thanks to providing the AI exe-
cuting environments closer to UE, TONA is 
anticipated to have some advantages, such 
as better data privacy protection, lower 
latency, and lower energy consumption.

4. Lists some open issues, including distribut-
ed AI learning, mobility management, and 
security assurance.

network AI
The cloud AI architecture has been widely used 
in the 5G era to provide centralized computing, 
big data analysis, and AI training and inference 
services, where terminals provide data, mobile 
networks provide communication channels, and 
clouds provide AI capabilities. Coordinating these 
independent functions and resources among mul-
tiple facilities provides effective, flexible, smooth, 
and stable services and ensures QoE is extremely 
difficult. For latency-sensitive ultra-reliable low-la-
tency communication (URLLC) services, MEC 
deploys application servers close to base stations 
and therefore has lower latency than cloud AI. 
However, the AI platform is still deployed at the 
application layer. Joint optimization of connection 
and AI resources (i.e., computing, data, model/

algorithm) still requires cross-layer collaboration 
in MEC. Consequently, the preceding problems 
involved in cloud AI remain unresolved.

Deploying AI functions (such as cloud and 
MEC) at the application layer leads to low 
throughput, high latency, poor privacy, and high 
carbon emissions. To address these problems, 
the network AI is launched to extend comput-
ing from the cloud to physically closer edges 
to end users. It also provides data storage and 
processing functions as well as AI capabilities 
inside the network, achieving higher security. 
Although this “device-edge-cloud” architecture 
with edge cloud is expensive to deploy, it can 
support compute-intensive, latency-sensitive, 
security-assured, and privacy-sensitive applica-
tions such as interactive virtual reality (VR) and 
augmented reality (AR) games, autonomous driv-
ing, and smart manufacturing [7]. Therefore, it is 
becoming promising in various high-value-added 
application scenarios.

By introducing AI in the network, 6G net-
work AI applies to three scenarios (shown in 
Fig. 1): Network element (NE) intelligence, net-
work intelligence, and service intelligence. NE 
intelligence is the native intelligence of single 
nodes, e.g., core network (CN) or radio access 
network (RAN) nodes. Network intelligence 
refers to the collaboration of multiple intelli-
gent NEs to achieve swarm intelligence. Both 
NE intelligence and network intelligence can 
be triggered internally or externally via open 
interface. Moreover service intelligence refers 
to the 6G network AI being provided as a ser-
vice, which is generally triggered by external 
services and implemented in the network, with-
out understanding the application service logic. 
Put simply, NE intelligence and network intelli-
gence provide AI services for internal network 
modules, and service intelligence provides AI 
services for external third-party applications. 
Here, we assume that some network units like 
base stations and UEs will have some type of 
AI processor which can be used for themselves 
and the third parties.

To support the three scenarios, the 6G 
native AI network architecture should have a 
unified framework for different types of AI train-
ing and inference. For example, a distributed AI 
environment must be built on the 6G network. 
Specifically, the 6G native AI network architecture 
must be able to: (1) use various native AI capa-
bilities (e.g., connection, computing, data, and 
AI training and inference capabilities) of NEs and 
terminals; (2) provide on-demand AI, computing, 
and data services for networks and third-party 
applications; and (3) guarantee the QoAIS in het-
erogeneous, dynamic, fully distributed, and other 
complex wireless environments. This is the reason 
that our proposed solution shift from a session-ori-
ented to a task-oriented architecture to address 
the preceding challenges.

network PArAdIgm chAnge
The TONA, as shown in Fig. 2, introduces the 
orchestration and control functions as well as the 
resource layer in network AI. The control function 
uses control layer signaling to control multi-nodes 
(UEs, base stations, and CN NEs) and heteroge-
neous resources in real-time. FIGURE 1. Scenarios and requirements of 6G network AI.

It also provides data storage and processing functions as well as AI capabilities inside the network, 
achieving higher security.
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We believe that the 6G network architec-
ture requires the following changes in the design 
paradigm:
1. Change 1: The object to be managed and 

controlled in network are changed from ses-
sions to tasks.

2. Change 2: The resources of the object 
are changed from one dimension to 
multi-dimensions, from homogeneous to 
heterogeneous.

3. Change 3: The object control mecha-
nism are changed from session-control to 
task-control.

4. Change 4: The performance indicators of 
the object are changed from session-QoS 
to task-QoS.

chAnge 1: From sessIon to tAsk
AI tasks differ from traditional sessions in terms of 
technical objectives and methods.

In terms of technical purposes, a traditional 
communications system provides session services, 
typically between terminals or between terminals 
and application servers, to transmit user data 
(including voice). Conversely, network AI (i.e., NE 
intelligence and network intelligence) aims to pro-
vide intelligent services for networks and improve 
communication network efficiency. Service intel-
ligence seeks to provide app-specific intelligent 
services for third parties. Thus, sessions and AI 
tasks have different purposes.

In terms of technical methods, to transmit 
user data, a traditional communications service 
needs to maintain a QoS assurance mechanism 
for user-oriented connection channels as well as 
their lifecycle management, such as E2E tunnels 
from UEs to base stations and then to the CN. 
This is necessary to provide QoS guarantee for 
the data transmission. Conversely, AI is a data- 
and computing-intensive service. Compared 
with sessions, AI introduces new resources, 
including computing (e.g., CPU, GPU, and net-
work processing unit (NPU)), data (generated or 
used by AI), and algorithms (e.g., neural network 

models and reinforcement learning). Thus 6G 
networks need to introduce new resource man-
agement mechanisms. However, it is difficult 
to efficiently implement AI services on a single 
node due to the bottlenecks in single-point com-
puting, data privacy protection, and ultra-large 
model storage. Consequently, a new collabo-
ration mechanism in 6G networks is required 
to implement computing, algorithm, and data 
collaboration among multiple nodes. Hence, 
sessions and AI tasks have different technical 
methods.

These differences show that the session-ori-
ented system cannot support native AI and that 
a new task-oriented system needs to be designed 
for the new resource management mechanism 
and multi-node collaboration mechanism. This 
article defines a task that coordinates multi-
node and multi-dimensional resources at the 6G 
network layer to achieve a given objective. For 
example, a federated learning in network needs 
the coordination of multiple nodes of the base 
station and multiple UEs, and the coordination 
of communication, AI model, and computing 
resources.

chAnge 2: From sIngle-dImensIon to multI-dImensIon 
heterogeneous resources

The traditional wireless system establishes 
tunnels and allocates radio resources for data 
transmission. Conversely, TONA implements 
collaboration among heterogeneous resources 
of connection, computing, data and model/
algorithm to execute AI tasks. Take an AI infer-
ence task as an example. In this case, executors 
need to obtain certain resources to execute the 
tasks. Specifically, the executors need to obtain 
computing resources like computing timeslots 
for the tasks, data resources like the data col-
lected in real-time or external data input, and 
algorithm resources including a possible AI 
model such as a graph neural network (GNN), 
a convolutional neural network (CNN), or rein-
forcement learning. 

FIGURE 2. Network paradigm changes.
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chAnge 3: From sessIon-control to tAsk-control
Unlike session control, task management and 
control in network AI includes the following 
functions: (1) Decomposing and mapping from 
external services to internal tasks, (2) Decompos-
ing and mapping from service QoS to task QoS, 
and (3) Providing heterogeneous and multi-node 
collaboration mechanisms to orchestrate and con-
trol heterogeneous resources of multiple nodes at 
the infrastructure layer in real-time (to implement 
distributed serial or parallel processing of tasks 
and real-time QoS assurance). For a simple ser-
vice request, one service may correspond to or 
be mapped as one task. For a complex service 
request (e.g., integration of multiple service flows, 
or a service flow with numerous calculations), one 
service may be mapped to multiple nodes for sys-
tematic execution.

For function (3), the execution of an AI task 
requires collaboration in two dimensions:

Heterogeneous Resources Collaboration: The 
execution of a task may require some or all of 
the heterogeneous resources. For example, task 
deployment requires configuring the heteroge-
neous resources, and task execution requires 
scheduling the heterogeneous resources in 
real-time.

Multi-Node Collaboration: First, in a 
traditional communications network, connec-
tion-specific computing is mainly implemented 
on a single NE, and computing sharing and col-
laboration are not required. The emergence of 
AI is accompanied by large-scale AI training, 
large-model AI inference, and massive percep-
tual image processing, requiring significantly 
more computing than traditional networks do. 
Simply expanding the computing capability of 
each NE across the entire network will result 
in high deployment costs. Hence, distributed 
computing is needed, which completes a task 
collaboratively among multiple nodes through 
shared computing. Second, as data owner-
ship awareness grows, data privacy protection 
requirements become more stringent. For 
example, the raw data of User Equipment (UE) 
cannot be uploaded to networks for training. 
Federated learning solves this problem through 
collaborative learning and gradient transfer at 
the data layer among multiple nodes. Third, 
model training consumes substantial computing 
and storage resources to support native AI, and 
thus a good model needs to be shared within 
the network, and collaboration for models 
among multiple nodes is required.

chAnge 4: From sessIon-Qos to tAsk-Qos
Unlike previous generations of mobile networks, 
6G networks are not just channels that serve 
traditional communications services. Different 
AI scenarios have different requirements for AI 
service quality. They demand an indicator mecha-
nism to quantitatively or hierarchically convey user 
requirements while also orchestrating and con-
trolling the comprehensive effect of AI resources. 
Therefore, this article proposes the quality of AI 
service (QoAIS).

The QoS of traditional communication net-
works mainly considers connection-specific 
performance indicators such as latency and 
throughput of communication services [8]. 
In addition to these traditional communication 
resources, 6G networks will introduce new 
resources such as computing, algorithm, and 
data, requiring an extension of evaluation indica-
tors. At the same time, with the implementation 
of “Carbon Neutrality” and “Peak Carbon Diox-
ide Emissions” policies, the global AI industry’s 
attention on data security and privacy, and users’ 
increasing requirements for network autonomy, 
users will focus on more than just performance 
indicators in the future. The requirements on 
aspects such as overhead, security, privacy, and 
autonomy will increase, and these aspects will 
become new dimensions for evaluating QoS. 
Consequently, the QoAIS indicator system needs 
to be extended from the existing indicators during 
the initial design [9].

For example, the QoAIS indicators for AI train-
ing services are as follows:
1. Efficiency: efficiency indicator boundary, 

training duration, generalization, reusabil-
ity, robustness, explainability, consistency 
between the loss function and optimization 
objective, and fairness

2. Overhead: storage overhead, comput-
ing overhead, transmission overhead, and 
power consumption

3. Security: storage security, computing securi-
ty, and transmission security

4. Privacy: data privacy, and algorithm privacy
5. Autonomy: fully autonomous, partially 

autonomous, and manually controllable
QoAIS is an essential input for the network 

AI orchestration and management system and 
control functions. The orchestration and man-
agement system decomposes and maps QoAIS 
to generate QoS requirements of AI tasks, and 
then maps the task QoS to QoS requirements 
of multi-dimensional heterogeneous resources. 
The management, control, and user plane mech-
anisms are designed to ensure continuous QoAIS 
assurance.

ArchItecture And key technologIes
This section describes the logical architecture and 
deployment options of TONA, and QoAIS details.

logIcAl ArchItecture oF tonA
First, we introduce fundamental basic concepts 
in wireless network. A communications system 
consists of a management domain and a con-
trol domain. The Operations Administration and 
Maintenance (OAM) deployed in management 
domain is used to operate and manage NEs 
through non-real-time (usually within minutes) 
management plane signaling. The control domain 
is deployed on core network (CN) NEs, base sta-
tions, and terminals, and features with real-time 
controlling signaling (usually within milliseconds). 
For example, an E2E tunnel for a voice call can 
be established within dozens of milliseconds by 
control signaling.

Unlike the centralized, homogeneous, and sta-
ble AI environment provided by the cloud, the 
network AI faces the following technical chal-
lenges when embedded in the wireless networks: 

Different AI scenarios have different requirements for AI service quality.
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(1) AI needs to be distributed on numerous CN 
NEs, base stations, and UEs. Therefore, it is nec-
essary to consider how to manage the massive 
number of nodes efficiently in the architecture 
design. (2) The computing, memory, data, and 
algorithm capabilities of different nodes vary sig-
nificantly, requiring the architecture design to also 
consider how to efficiently manage these het-
erogeneous nodes efficiently. (3) The dynamic 
variation of the channel status and the comput-
ing load need to be factored into the architecture 
design.

To address the aforementioned challenges, 
TONA includes two logical functions, as 
shown in Fig. 3: (1) AI orchestration and man-
agement, called Network AI Management & 
Orchestration (NAMO); and (2) task control. 
NAMO decomposes and maps AI services to 
tasks and orchestrates the AI service flows. It 
is not performed in real-time and is generally 
deployed in the management domain. Task 
control introduces the Task Anchor (TA), Task 
Scheduler (TS), and Task Executor (TE) func-
tions in the control domain in three layers. This 
layered design strikes a balance between the 

task scope and real-time task scheduling, and 
effectively manages the numerous, heteroge-
neous nodes and aware of dynamic change of 
heterogeneous resources (e.g. channel status 
and computing load).

The following describes the detailed function-
alities of TA, TS, and TE.

TA manages the lifecycle of tasks (including 
deploying, starting, deleting, modifying, and mon-
itoring tasks) based on task QoS requirements. It 
also implements collaboration among heteroge-
neous resources to guarantee coarse-grained QoS 
in the initial deployment phase.

TS controls and schedules tasks in the task 
execution phase. It consists of the information 
collection and resource management modules. 
Information collection requires that TS senses 
the computing load, data processing capabili-
ties, algorithm models being used, and channel 
conditions on a plurality of nodes in real-time. 
Based on this information, TS has a more real-
time resource management capability than TA. 
For example, when the network environment 
changes, TS adjusts AI models and data pro-
cessing functions or schedules connection and 

FIGURE 3. Logical architecture of TONA.
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computing resources in real-time to achieve 
timely QoS assurance.

TE is responsible for task execution and 
possible service data interaction. For example, 
federated learning needs to transfer intermediate 
gradient information among multiple nodes.

dePloyment ArchItectures
The statuses of TEs (e.g., the CPU load, memory, 
electricity, and UE channel status) change in real-
time. As such, deploying TA and TS close to each 
other can reduce the management delay. Accord-
ing to the design logic of wireless networks, the 
CN and RAN need to be decoupled as much as 
possible. For example, the CN should be inde-
pendent of RAN Radio Resource Management 
(RRM) and Radio Transmission Technology (RTT) 
algorithms. Therefore, this article recommends 
that TA/TS be deployed on RAN and CN, named 
RAN TA/TS and CN TA/TS, respectively. This way 
will allow TA to manage TEs in real-time flexibly. 
Four deployment scenarios of TONA are shown 
in Fig. 4 to describe the necessity and rationality 
of CN TA and RAN TA. These scenarios are only 
examples—there may be other deployment sce-
narios and architectures.

Assume that TA, TS, and TEs are deployed in 
RAN to perform federated learning between the 
base station and UEs. Considering the 6G archi-
tecture is undetermined, this article reuses the 5G 
RAN architecture for reference. A gNodeB is a 
5G base station, which can be deployed in stand-
alone mode or by separating the centralized unit 

(CU) from the distributed units (DUs). In the latter 
mode, the CU may be deployed on the cloud for 
non-real-time signaling control and data transmis-
sion. The DUs may be deployed closer to UEs for 
real-time resource allocation, data transmission 
and retransmission.

Scenario 1: gNodeB + UEs. In this scenario, 
the gNodeB serves as both TA and TS, and the 
UEs serve as TEs. Here, a UE is a computing 
provider and task executor, which accepts task 
assignment and scheduling from the gNodeB. The 
Uu interface and Radio Resource Control (RRC) 
layer between the gNodeB and the UE can be 
enhanced to support task controlling and sched-
uling purposes.

Scenario 2: CU + DUs. In this scenario, the 
CU serves as both TA and TS, and the DUs serve 
as TEs. Here, a DU is the computing provider and 
task executor. The F1 interface and F1-AP layer 
between the CU and the DU can be enhanced to 
support task controlling and scheduling purposes.

Scenario 3: CU + DUs + UEs. In this scenario, 
the CU serves as TA, the DUs as TSs, and the UEs 
as TEs. Here, a UE is a computing provider and 
task executor, and the CU is the task manager. A 
DU observes a task allocated by the CU to UEs, 
and performs heterogeneous resources schedul-
ing and real-time QoS guarantee. This scenario 
separates TA from TSs. TSs are deployed lower 
than TA is; TSs can therefore acquire the status 
of TE heterogeneous resources more quickly to 
achieve real-time task QoS monitoring and rapid 
adjustment of heterogeneous resources. The 

FIGURE 4. Four deployment scenarios of TONA.
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Uu interface and RRC/Medium Access Control 
(MAC) layer between the CU/DU and the UE 
can be enhanced to support task controlling and 
scheduling purposes.

Scenario 4: CN + gNodeB + UEs. In this sce-
nario, the CN serves as TA, the gNodeB serves 
as TS, and the UEs serve as TEs. Here, a UE is the 
computing provider and task executor. The Non 
Access Stratum (NAS) interface and NAS layer 
between the CN and the UE can be enhanced 
to support task controlling purposes, and the 
Uu interface and RRC/MAC layer between the 
gNodeB and the UE can be enhanced to support 
task scheduling purposes.

In this example, TA, TS, and TE are only logical 
functions, which may be deployed on the same or 
different nodes depending on the scenarios. Log-
ically, a single node may have multiple functions 
(any combination of TA, TS, and TE).

tAsk Qos AssurAnce
To guarantee QoAIS, the aforementioned hier-
archical management and control architecture 
is implemented through three-layer closed-loop 
management. The TS layer monitors and opti-
mizes the heterogeneous resources in real-time 
to ensure task QoS within TA resource configu-
rations. When the task QoS guarantee is beyond 
the range of the TS layer (e.g. the computing 
resource controlled by the TS is not sufficient for a 
task, the TS should report to TA to allocate more 
computing resource to guarantee the QoS of this 
task), the TA layer modifies the overall resource 
configuration. For example, the TA layer adjusts 
the network nodes involved in the task and 
replaces the model or data warehouse. When the 
task QoS guarantee is beyond the range of the TA 
layer, NAMO performs optimization by changing 
the anchor position of an AI task or decomposing 
the mapping between AI services and AI tasks.

Table 1 lists the mapping between the QoAIS 
and resource QoS indicators. The QoAIS indica-
tors are decomposed into task QoS indicators and 
then mapped to resource QoS indicators, which 
jointly guarantee the QoAIS at the management, 
control, and user planes. The QoS indicators in 
each resource dimension are classified into indi-
cators suitable for quantitative evaluation (such 
as resource overheads) and qualitative evalu-
ation (such as security level, privacy level, and 
autonomy level). For the indicators suitable for 
quantitative evaluation, the quantization solutions 
are mature or easy to formulate, such as train-
ing duration, algorithm performance boundary, 
computing precision, and resource overheads. 
However, some other indicators (e.g., model 

robustness, reusability, generalization, and 
explainability) cannot be evaluated quantitatively. 
Therefore, we need to consider indicators that 
reflect user requirements and introduce them by 
phase.

tAsk Procedures
From the E2E procedure perspective, NAMO sub-
mits the AI service request to TA for execution 
after receiving an external service request. The 
E2E procedure is as follows:
1. Generate or import an AI use case, which is 

an AI service request submitted by a user to 
the network. This use case may call one or 
more types of network AI services, such as 
AI training, verification, and inference.

2. Decompose the use case into one or more 
AI services.

3. Decompose an AI service into one or more 
AI tasks (AITs), and decompose the AI ser-
vice QoAIS into the AI task QoS.

4. Determine the anchor position of an AIT.
5. Decompose the task QoS into resource 

QoS requirements, and specify the hetero-
geneous resources required by the AIT.

6. Determine and configure the heteroge-
neous resources required by the AIT. This 
involves selecting nodes (those that partic-
ipate in computing and provide data and 
algorithms/models), establishing connec-
tions between nodes, and updating the 
configurations.

7. Among the selected nodes, determine and 
adjust the computing allocation in real-
time, optimize the communication connec-
tion quality, collect the required data, and 
replace or optimize the algorithms/models. 
This is necessary to ensure the task QoS 
and further guarantee the QoAIS.
The management layer has poor real-time per-

formance. Although it can obtain a wide range 
of network information, such information is 
coarse-grained. Furthermore, the management 
layer cannot obtain real-time information about 
radio links and terminal resources. Conversely, 
the control layer has good real-time perfor-
mance. However, while it can obtain accurate 
information, the range of this information is lim-
ited. Hence, some functions are suitable for the 
management or the control layer, and others may 
be achieved through the collaboration of both 
layers.

AdvAntAge AnAlysIs
Compared with cloud/MEC AI, the TONA 
and QoAIS have the following advantages 

QoAIS Indicator Resource- specific Quantitative Indicator Non-quantitative Indicator

Performance indicator boundary, training 
duration, generalization, reusability, 
robustness, explainability, consistency with 
optimization objective, and fairness

Data Feature redundancy, integrity, data accuracy, and data 
preparation duration

Sample space balance, integrity, and 
sample distribution dynamics

Algorithm Performance indicator boundary, training duration, 
convergence, and optimization objective matching degree

Robustness, reusability, generalization, 
explainability, and fairness

Computing Computing precision, duration, and efficiency None

Connection Bandwidth and jitter, delay and jitter, bit error rate and 
jitter, and reliability

None

TABLE 1. Mapping between QoAIS indicators and resource QoS indicators in the AI training service.
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(summarized in Table 2) in meeting users’ custom-
ized AI service requirements:

QoAIs AssurAnce
Dynamic wireless environments require joint 
optimization of the heterogeneous resources 
(connection and three AI resources) to achieve 
precise QoAIS assurance. In TONA, all hetero-
geneous resources are inside the network and 
can perceive each other. Furthermore, a real-time 
(within milliseconds) collaboration mechanism 
is designed at the control layer. Conversely, the 
cloud/MEC AI lacks a collaboration mechanism 
between the communication resources and the 
three AI resources, meaning that these resources 
cannot observe each other in real-time. Generally, 
they observe each other through the management 
layer (with non-real-time capability openness) or 
the application layer (within seconds or minutes), 
which cannot adapt to dynamic wireless environ-
ment changes in real-time, and cannot guarantee 
QoAIS.

Take device-cloud joint AI training as an exam-
ple [10], [11], the Cloud AI cannot be aware of 
the connection’s real-time status to adjust the het-
erogeneous resources and thus cannot provide 
customized training solutions for users with dif-
ferent connection performances. Meanwhile, for 
TONA, the network detects environment changes 
(such as terminal movement, disconnection, and 
burst interference) in real-time and quickly adjusts 
the joint training solution. For example, in TONA 
the network can change the split learning [12], 
[13] point to reduce the intermediate data size 
when the UE is far away from the base station. 
Thus, QoAIS can be achieved for customized AI 
training services.

Take device-cloud computing offloading as an 
example. If a terminal’s local computing resource 
does not meet the requirements of computing-in-
tensive services, cloud/MEC AI offloads some 
computation to the cloud. During the execution 
of computing tasks, the computing resource uti-
lization of terminals changes in real-time (within 
milliseconds). The non-real-time collaboration of 
cloud AI (within seconds or minutes) cannot trace 
users’ computing requirements in real-time, nor 
can it promptly offload computing to the cloud. 
As such, this approach fails to meet users’ custom-
ized QoAIS requirements. On the other hand, for 

TONA, during task execution, TONA can detect 
the dynamic changes of computing loads on termi-
nals in real-time and promptly adjust the computing 
resource allocation, calculation precision, and serial 
or parallel computing mode on the network. As 
such, this approach can ensure QoAIS for custom-
ized computing offloading services.

lAtency
TONA computing is distributed on NEs closer 
to UEs or even directly on UEs to process data 
locally. This not only successfully achieves 
real-time and low-latency AI services, but also sig-
nificantly reduces data transmission. In the cloud/
MEC AI mode, a large amount of data needs to 
be transmitted to the cloud/MEC for training, 
meaning that E2E data transmission takes longer 
to complete.

Take joint device-cloud AI inference as an 
example [14], [15]. Cloud/MEC AI transmits data 
from devices to the cloud, performs real-time 
training/interference, and transmits the results 
back to devices. The long transmission distance 
causes high latency, making it difficult to meet the 
requirements of ultra-low latency scenarios such 
as Industrial Internet of Things (IIoT), even if the 
application server is deployed on the MEC. By 
contrast, for TONA, data processing is terminated 
within a network, the E2E transmission latency is 
as low as 1 millisecond, enabling ultra-low latency.

overheAd
TONA can optimally allocate resources through 
the real-time collaboration mechanism of the 
heterogeneous resources, maximizing the overall 
resource utilization and reducing the transmission 
and computing overheads. Conversely, because 
the cloud/MEC AI cannot adapt to dynamic envi-
ronments, it allocates resources based on only 
the maximum resource consumption to ensure 
QoAIS. As a result, the overall resource utilization 
is low, and the resource overhead is high.

Take joint device-cloud AI training as an 
example. For Cloud/MEC AI, long device-cloud 
distance causes large transmission overheads. 
On the other hand, for TONA, data is processed 
nearby, effectively reducing data transmission 
overheads.

Furthermore, Cloud/MEC AI cannot measure 
quality of wireless connections in real-time. Dif-
ferent connections status of TEs lead to low AI 
efficiency and increase computing overhead. In 
federated learning, for example, straggler ter-
minals may be abruptly disconnected from the 
network or cause a long delay. If a large amount 
of straggler data is discarded, the number of 
training samples is reduced, affecting the conver-
gence efficiency of the current round. If a long 
delay occurs, the iteration time of the current 
round is prolonged. However, for TONA, the net-
work can detect each UE’s channel status and 
set a longer local training period for the straggler 
to reduce the total reporting numbers when the 
UE‘s data rate is low. This improves the overall 
AI training efficiency and reduces the computing 
overhead.

securIty
TONA has native data security and privacy pro-
tection capabilities because it processes data 

TONA has native data security and privacy protection capabilities because it processes data inside 
the network.

Cloud/MEC AI TONA

QoAIS Difficulty to guarantee the personalized QoAIS. Easy to guarantee the personalized QoAIS.

Latency Higher latency due to out-network processing (e.g. 
second/minute level).

Lower latency due to in-network processing  
(e.g. millisecond level).

Resource overhead Larger transmission overheads. Less transmission overheads.

Larger computation overheads. Less computation overheads.

Security Data privacy is ensured by the application layer. Native security and privacy via in-network processing.

TABLE 2. Performance comparison of cloud/MEC AI and TONA.

Authorized licensed use limited to: Zhejiang University. Downloaded on April 21,2024 at 00:55:35 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • January/February 2024 227

inside the network. Unlike TONA, the cloud/MEC 
AI protects data privacy only at the application 
layer.

oPen reseArch Issues
Although the industry has reached a preliminary 
consensus on 6G native AI networks, some effi-
cient support and standardization methods need 
further research and development.
1. Distributed AI Learning: Distributed AI 

learning involves collaboration and inter-
action among multiple TEs. The definition 
of the collaboration mechanisms and inter-
action information vary according to algo-
rithms. Therefore, we need to study how to 
natively and efficiently support distributed 
AI from the architectural perspective.

2. Mobility: Assuming a UE participates in the 
task process (e.g., the UE is a participant in 
task execution), when the UE moves from 
one base station to another, how to guar-
antee the service continuity for AI tasks 
is a critical problem (e.g., how to achieve 
zero-millisecond interruption).

3. Security Assurance: Considering the dis-
tributed deployment of TEs in TONA, the 
access of multiple heterogeneous devices 
and distributed AI learning pose significant 
challenges to network AI security. There-
fore, for the distributed communication and 
learning of TEs, the implementation of port 
monitoring, privacy protection and security 
isolation is an important research direction 
to ensure the security of TONA.

conclusIon
To meet the 6G vision of pervasive intelligence 
and internet of intelligence, TONA is proposed to 
support efficient collaboration of heterogeneous 
resources and multi-node in wireless networks, 
and to provide new services in the form of tasks at 
the network layer. By bringing new dimensions of 
resources to 6G networks (i.e., computing, data, 
and model/algorithm), this architecture enables 
the SLA assurance of computing related services 
such as AI services, further explores the appli-
cation scenarios of 6G networks, and enriches 
the value of wireless networks. Furthermore, the 

task concept and TONA proposed in this article 
support not only AI tasks, but also sensing-, com-
puting- and data processing-specific tasks.
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