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Abstract— In recent years, with the rapid development of deep
learning and natural language processing technologies, semantic
communication has become a topic of great interest in the field of
communication. Although existing deep learning-based semantic
communication approaches have shown many advantages, they
still do not make sufficient use of prior knowledge. Moreover,
most existing semantic communication methods focus on the
semantic encoding at the transmitter side, while we believe
that the semantic decoding capability of the receiver should
also be concerned. In this letter, we propose a knowledge
enhanced semantic communication framework in which the
receiver can more actively utilize the facts in the knowledge
base for semantic reasoning and decoding, on the basis of
only affecting the parameters rather than the structure of the
neural networks at the transmitter side. Specifically, we design
a transformer-based knowledge extractor to find relevant factual
triples for the received noisy signal. Extensive simulation results
on the WebNLG dataset demonstrate that the proposed receiver
yields superior performance on top of the knowledge graph
enhanced decoding.

Index Terms— Semantic communication, knowledge graph,
transformer.

I. INTRODUCTION

BENEFITING from the rapid development of deep learn-
ing (DL) and natural language processing (NLP), seman-

tic communications emerge with a special emphasis on the
successful delivery of the semantics of a message, rather
than the conventional bit-level accuracy in traditional com-
munication. There have been some interesting studies on
semantic communication [1], [2], [3], [4], [5]. Among them,
one of the popular paradigms belongs to the DL-based joint
source-channel coding (JSCC). For example, [1] proposes a
transformer-based semantic communication system for text
transmission. Reference [2] introduces a semantic commu-
nication system based on Universal Transformer (UT) with
an adaptive circulation mechanism. In order to reduce the
semantic transmission error, [3] exploits hybrid automatic
repeat request (HARQ), while [4] introduces an adaptive bit
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rate control mechanism. Moreover, [5] proposes a masked
autoencoder (MAE) based system to robustly combat the
possible noise. Notably, a key assumption of these studies
lies in that both transmitter and receiver share common
knowledge. On top of this assumption, the existing semantic
communication methods jointly train the DL-based transmitter
and receiver, and have proven their superiority over traditional
communication methods. However, the receiver is still lacking
the comprehensive knowledge understanding and reasoning
ability, and cannot make full use of the implicit prior knowl-
edge in complex sentences.

In order to improve the capability of knowledge under-
standing and reasoning, some studies propose to introduce the
knowledge graph (KG), which stores human knowledge with a
graph structure composed of entities and relationships [6], into
semantic communication. In KGs, each fact is abstracted into
a triple in the form of (entity-relationship-entity). For exam-
ple, [7] utilizes knowledge triples to represent the semantic
information and evaluates the importance of each triple by
an attention policy gradient algorithm. Reference [8] proposes
a semantic communication framework by encoding texts into
KGs. Reference [9] introduces a knowledge reasoning based
semantic communication system. In [10], a reliable semantic
communication system based on KG is proposed, which can
adaptively adjust the transmitted triples according to channel
quality. In [11], the authors exploit the knowledge base by
leveraging a logic programming language. In [12], the authors
propose a semantic similarity-based approach to automatically
identify and extract the most common concepts from the
knowledge base.

Knowledge graphs have somewhat improved the capabil-
ity of semantic communication systems to handle common
knowledge. However, most existing works only consider opti-
mizing the transmitter while ignoring the receiver. Typically,
their transmitters achieve the semantic encoding by capturing
and embedding the factual triples from the sentences with
knowledge graphs. Nonetheless, it is a great challenge for a
knowledge base to cover all the semantic information of a
sentence, and the information missing may be detrimental to
the communication efficiency. For example, a sentence like
“She loves him” can’t be represented by any factual triples
in the knowledge base, but it might be also the vital element
in a transmitted text, leading the failure unacceptable. Instead,
knowledge graphs can only describe the semantics in those
simple declarative sentences. Therefore, sending messages that
are only encoded by knowledge graph-based triples may cause
extra semantic loss.

Therefore, in order to address these issues, we propose a
novel receiver-side scheme for semantic communication based
on KG. Different from existing works that extract factual
triples from the transmitter side as the semantic representa-
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TABLE I
NOTATIONS USED IN THIS PAPER

tions, we apply a knowledge extraction module at the receiver
side as a semantic decoding assistant to avoid the injection
of extra semantic noise and enhance the model’s robustness
in low SNR environment, making semantic communications
more effective. By doing so, the knowledge in the knowledge
base can be utilized for decoding on the basis of only affecting
the parameters rather than the structure of the deep neural
networks (DNN) at the transmitter side. Unlike the transmitter-
side schemes [8], [9], [10], as the received content is inevitably
polluted by noise, it remains essential to accurately extract
the factual triples from noisy content before leveraging them
to complement the decoding procedure. Therefore, rather than
focusing on each word in a sentence, it is better to consider
extracting the semantic knowledge representation of the whole
sentence from a novel perspective. For this purpose, we utilize
transformer encoders to get the implicit semantic representa-
tion of a sentence. By integrating KG and knowledge extractor
into the conventional semantic decoder, the receiver can extract
knowledge from noisy messages and enhance the decoding
capability.

The remainder of the letter is organized as follows. The
system model and problem formulation are given in Section II.
Section III describes the DNN structure of a knowledge
enhanced semantic receiver. Section IV discusses the simu-
lation settings and experimental results. Section V concludes
the letter.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A semantic communication system generally encompasses a
semantic encoder and decoder, which can be depicted in Fig. 1.
Without loss of generality, we denote the input sentence s =
[s1, s2, . . . , sN ] ∈ NN , where si represents the i-th word (i.e.,
token) in the sentence. In particular, the transmitter consists
of two modules, that is, the semantic encoder and the channel
encoder. The semantic encoder Sβ(·) extracts the semantic
information in the content and represents it as a vector h ∈
RN×ds , where ds is the dimension of each semantic symbol.
Mathematically,

h = Sβ(s), (1)

and then the channel encoder Cα(·) encodes h into symbols
that can be transmitted over the physical channel as

x = Cα(h), (2)

Fig. 1. The framework of proposed knowledge graph enhanced semantic
communication system.

where x ∈ CN×c is the channel vector for transmission, c is
the number of symbols for each token. Given that y ∈ CN×c

is the vector of received symbols after transmitting x over the
physical channel, y can be formulated as

y = Hx + n, (3)

where H denotes the channel matrix and n ∼ N (0, σ2I) is
the additive white Gaussian noise (AWGN).

After receiving y, the receiver first decodes the content
from symbols with the channel decoder C−1

δ (·) and gets the
decoded vector ĥ ∈ RN×ds ,

ĥ = C−1
δ (y). (4)

Notably, semantic communications implicitly rely on some
prior knowledge between the transmitter and receiver for the
joint training process. However, different from such prior
knowledge, the knowledge base in our model refers to some
factual triples and can be located at the receiver side. To exploit
the knowledge base, a knowledge extractor is further applied
at the receiver side to extract and integrate relevant knowledge
from the received signal to yield the aggregated knowledge k.
In particular, the knowledge extracting and aggregating process
can be formulated as

k = Kθ(ĥ), (5)

where Kθ(·) represents the knowledge extractor.
Then the knowledge enhanced semantic decoder S−1

γ (·)
leverages the channel decoded vector ĥ and the extracted
knowledge vector k to obtain the received message ŝ =
[ŝ1, ŝ2, . . . , ŝN ]

ŝ = S−1
γ (ĥ || k), (6)

where S−1
γ (·) stands for the knowledge enhanced semantic

decoder, and || indicates a concatenation operator.
The accuracy of semantic communication is determined by

the semantic similarity between the sent and received contents.
In order to minimize the semantic errors between s and ŝ, the
loss function can take account of the cross entropy of the two
vectors

Lmodel = −
N∑

i=1

(q(si) log p(ŝi)), (7)

where Lmodel is the loss function, q(si) is the one-hot repre-
sentation of si ∈ s, and p(ŝi) is the predicted probability of
the i-th word.
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Instead of using traditional communication modules for
physical-layer transmission, most existing studies have chosen
to utilize end-to-end DNNs to accomplish the whole communi-
cation process, as shown in Fig. 1. The semantic encoders and
decoders are typically based on transformers [13]. Meanwhile,
the channel encoding and decoding part can be viewed as
an autoencoder implemented by fully connected layers. The
whole semantic communication process is then reformulated
as a sequence-to-sequence problem. Based on these DNNs,
in this letter, we primarily focus on developing appropriate
implementation of the knowledge extractor in (5) and the
knowledge-enhanced decoder in (6) to minimize the model
loss function.

III. A KNOWLEDGE EXTRACTOR MODEL BASED
SEMANTIC DECODER

A. The Design of the Knowledge Extractor
In this part, we discuss the implementation of knowledge

extractor enhanced semantic decoding task. The whole knowl-
edge extraction process, as shown in Fig. 2, can be divided
into two phases. The first phase executes an embedding task
to obtain a representation of the decoded vector with the
transformer encoders. In the second phase, we try to find all
corresponding triples of the representation with a multi-label
classifier, and then embed the triples into a compressed format
to assist the final decoding.

In particular, in order to extract the semantic representa-
tion, we adopt a model composed of a stack of L identical
transformer encoders, each of them consisting a multi-head
attention mechanism, as well as some feed-forward and
normalization sublayers [13]. In particular, without loss of
generality, assuming that z(l−1) is the output of the (l − 1)-
th encoder layer, where z(0) is equivalent to ĥ for the input
layer, the self-attention mechanism of the l-th layer could be
represented as

Attention(z(l−1)) = softmax(
Q(l)K(l)T

√
dk

)V(l), (8)

where Q(l) = z(l−1)W(l)
Q , K(l) = z(l−1)W(l)

K , V(l) =
z(l−1)W(l)

V . W(l)
Q , W(l)

K and W(l)
V are the projection matrices

of the l-th layer, and dk is the dimension of model. Further-
more, z(l−1) is added to the calculated result Attention(z(l−1))
via a normalized residual connection, that is,

a(l) = LayerNorm(Attention(z(l−1)) + z(l−1)), (9)

where a(l) is the output, LayerNorm(·) denotes a layer nor-
malization operation. Afterwards, a feed-forward network is
involved as FFN(a(l)) = max(0,a(l)W(l)

F1 +b(l)
F1 )W(l)

F2 +b(l)
F2 ,

where W(l)
F1 , W(l)

F2 , b(l)
F1 and b(l)

F2 are parameters in the
feed-forward layer of the l-th encoder block. Next, we adopt
a residual connection and a layer normalization

z(l) = LayerNorm(FFN(a(l)) + a(l)). (10)

After L layers of encoding, the embedding representation
z(L) of the channel decoded vector ĥ is obtained. Then a
multi-label classifier is adopted to compute a indicator vector
t of the triples associated with the representation

t = sigmoid(z(L)Wt + bt), (11)

Fig. 2. The knowledge graph enhanced semantic decoder.

where t = [t̂1, · · · , t̂nt
] ∈ Rnt , t̂i ∈ [0, 1] for all i = 1 · · ·nt.

nt denotes the number of triples in the knowledge base, Wt

and bt are parameters of the classifier. If t̂i ≥ 0.5, the triple
mi corresponding to index i is predicted to be relevant to the
received content.

Ultimately, the obtained relevant factual triples {mi} pre-
dicted by the model are embedded into a vector k =
fk({mi}), where the embedding process is abstractly repre-
sented as fk(·). In particular, rather than compute the embed-
ding of the entity and relationship separately, we choose to
integrate the triples into one compressed format. Subsequently,
as in (6), the knowledge vector is concatenated with the
decoding vector and fed into the semantic decoder.

B. The Training Methodology

In order to train the knowledge extractor Kθ(·), a complete
semantic communication model is first required. During the
training, the sentences are first sent through the transmitter via
the channel and then the receiver decoded vector is fed into
the knowledge extractor. Afterwards, the knowledge extractor
is trained by gradient descent with the frozen parameters of
the transmitter. Since the number of negative labels are much
more than that of the positive labels in the classification, the
weighted Binary Cross Entropy (BCE) is utilized as the loss
function, which could be represented as

Lknowledge =
nt∑

i=1

−wi[ti · log t̂i + (1− ti) · log(1− t̂i)],

(12)

where ti ∈ {0, 1} represents the training label, and t̂i is the
prediction output in (11). wi is the weight of i-th position,
related to the hyperparameter w. For ti = 0, wi = w;
otherwise wi = 1 − w. Increasing w can result in a more
sensitive extractor, but it also brings an increase in the false
positive rate.

The training complexity of a knowledge extractor is
O(LN2 · dk), which is the same order as the transformer
encoder. Notably, the knowledge extractor is not limited to the
conventional transformer structure, but can also be applied to
different transformer variants, such as Universal Transformer
(UT) [2]. With the self-attention mechanism, the extracted
factual triples can provide additional prior knowledge to the
semantic decoder and therefore improve the performance of
the decoder. Typically, the knowledge vector is concatenated
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Algorithm 1 The Semantic Communication Process With
Knowledge Graph Enhanced Receiver

1: Require: models Sβ(·), Cα(·), S−1
γ (·), C−1

δ (·) and Kθ(·)

2: Input: tokenized sentence s
3: Output: decoded sentence ŝ
4: Transmitter:
5: Semantic encoding: h← (Sβ(s))
6: Channel encoding: x← (Cα(h))
7: Transmit x over the physical channel: y← Hx + n
8: Receiver:
9: Channel decoding: ĥ← C−1

δ (y)
10: Knowledge extraction Kθ(·):
11: Compute the embedding representation z(L)

12: t← sigmoid(z(L)Wt + bt)
13: Find the triples {mi} where t̂i ≥ 0.5
14: Knowledge embedding: k← fk({mi})
15: Semantic decoding: ŝ← S−1

γ (ĥ || k)

TABLE II
EXPERIMENTAL SETTINGS

to the received message, rather than being merged into the
source signal as previous works suggested. This architecture
ensures that when the extractor is of little avail, it can still
function as a standard encoder-decoder transformer structure,
while avoiding possible semantic losses introduced by the
knowledge extraction procedure. Therefore, even if the knowl-
edge extractor fails to find any relevant knowledge, the model
still performs comparably to the baseline.

IV. NUMERICAL RESULTS

A. Dataset and Parameter Settings
The dataset used in the numerical experiment is based on

WebNLG v3.0 [14], which consists of data-text pairs where the
data is a set of triples extracted from DBpedia and the text is
the verbalization of these triples. In this numerical experiment,
the weight parameter w is set to 0.02, while the learning rate
is set to 10−4. Moreover, we set the dimension of the dense
layer as 128×16, and adopt an 8-head attention in transformer
layer. The detailed settings of the proposed system are shown
in Table II. We train the models based on both the conventional
transformer and UT [2]. Besides, we adopt two metrics to
evaluate their performance, that is, 1-gram Bilingual Evalua-
tion Understudy (BLEU) [15] score for measuring word-level
accuracy and Sentence-Bert [16] score for measuring semantic
similarity. Notably, Sentence-Bert is a Siamese Bert-network
model that generates fixed-length vector representations for
sentences, while the Sentence-Bert score computes the cosine
similarity of embedded vectors.

Fig. 3. The transformer model performance of BLEU score with respect to
SNR.

Fig. 4. The transformer model performance of Sentence-Bert score with
respect to SNR.

Fig. 5. The Universal Transformer model performance of BLEU score with
respect to SNR.

Fig. 6. The Universal Transformer model performance of Sentence-Bert
score with respect to SNR.

B. Numerical Results

Fig. 3 and Fig. 4 show the BLEU score and Sentence-Bert
score of the transformer model with respect to the signal-to-
noise ratio (SNR), respectively. It can be observed that the
assistance of the knowledge extractor could significantly con-
tribute to improving the performance. In particular, regardless
of the channel type, the knowledge extractor can always bring
more than 5% improvement in BLEU under low SNR sce-
narios. For the Sentence-Bert score, the knowledge-enhanced
receiver also shows a similar performance improvement. This
demonstrates that the proposed scheme can improve the com-
prehension of semantics at the receiver side. Fig. 5 and Fig. 6
demonstrate the performance of the UT model under both the
BLEU and Sentence-Bert metric, and a similar performance
improvement could also be observed.

On the other hand, we test the performance of the knowl-
edge extractor under different SNRs. As shown in Fig. 7, the
extractor model can obtain a recall rate of over 90%. However,
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Fig. 7. The performance of knowledge extractor.

Fig. 8. The performance comparison under different numbers of encoder
layers for extractor.

TABLE III
THE PERFORMANCE COMPARISON BETWEEN A FIXED EXTRACTOR

MODEL AND SNR-SPECIFIC MODELS

Fig. 9. The performance comparison of the proposed scheme with a
transmitter-based scheme.

the received content may be polluted by noise, resulting in
an increase in false positives and leading to a large gap
between precision and recall. The number of encoder layers
in the knowledge extractor may also affect the performance
of the model. Therefore, we also implement the knowledge
extractor with different number of transformer encoder layers
and present the performance comparison in Fig. 8. It can
be observed that the 6-layer model performs slightly better
than the 3-layer model. However, the performance remains
almost unchanged when it further to 9 layers. Furthermore,
in addition to utilize a fixed model trained at certain SNR,
it is also possible to leverage several SNR-specific models,
each corresponding to a specific SNR. Table III demonstrates
the performance comparison between 0dB-specific and fixed
model. It can be observed that compared to the fixed model,
the SNR-specific model could yield superior performance
improvements. As a comparison, we also implement a scheme
that utilize knowledge extractor for semantic encoding at
the transmitter. Fig. 9 presents the corresponding simulation

results, and it can be observed that this transmitter-based
scheme is significantly inferior than the proposed scheme.

V. CONCLUSION

In this letter, we have proposed a knowledge graph enhanced
semantic communication framework in which the receiver
can utilize prior knowledge from the knowledge graph for
semantic decoding while requiring no additional modifications
to the transmitter architecture. Specifically, we have designed
a knowledge extractor to find the factual triples associated
with the received noisy sentences. Simulation results on the
WebNLG dataset have shown that our proposed system is able
to exploit the prior knowledge in the knowledge base much
more deeply and obtain performance gains at the receiver side.
In the future, we will investigate the joint optimization of both
the transmitter and the receiver enhanced by the knowledge
graph.
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