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ABSTRACT Deep neural networks (DNNs) have been incredibly successful at correctly classifying various
input types, including images, speech, and data, according to consumer preferences. However, the efficacy
of DNNs in Gestalt classification tasks, an important case in manifesting human perceptual capability,
remains challenging, as DNNs are generally unable to perceive illusory closure from Gestalt images unless
DNNs are carefully calibrated using a significant amount of priori information. However, altering the
input, as minute changes typically imperceptible to humans, can confound carefully calibrated DNNs. In
this study, EEG signal-empowered deep clustering based on topological data analysis (TDA) is proposed.
The adoption of TDA manifests the separability of EEG signals responsive to Gestalt and non-Gestalt
images. It also yields new families of features and descriptors for Gestalt illusory contours by extracting
topological and geometric information. Furthermore, the combination of analyzed EEG signals and digital
images further benefits the recognition of Gestalt illusory contours. Extensive experiments have shown
convincing improvements over the state-of-the-art DNNs (e.g., DeepCluster and multi-view clustering
[MVC]). In particular, DeepCluster with TDA can perceive illusory contours to some degree, given its 66.5%
classification accuracy. Nevertheless, on top of extracted topological features from EEG signals, it produces
higher classification accuracy (i.e., 71.9%), indicating the features extracted from the EEG signal contribute
to perceive Gestalt illusory contours. On the other hand, the applications of topological features to the latest
MVC also bring 4.5% improvement and demonstrate the effectiveness.

INDEX TERMS Deep neural network, topological data analysis, EEG signal, gestalt illusory contour
perception.

I. INTRODUCTION
State-of-the-art DNN methods enable computational mod-
els consisting of multiple processing layers to mimic how
the human brain perceives and understands multi-modal
information with different levels of abstraction. In particu-
lar, benefitting from advances in Moore’s Law, DNNs can
explore Gestalt grouping in relation to illusory contours and
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thereby implicitly capture intricate structures of large-scale
data within a satisfactory amount of time [1]. For example,
Kim et al. train a supervised learning DNN (e.g., Incep-
tionNet) to derive a closure measure metric, which capably
computes the similarity betweenGestalt images and triangles,
and verify the consistency of the proposed metric [2]. Based
on a dozen of video frames, Lotter et al. devise a PredNet
to capably predict the next frame. Surprisingly, they find
that the responses of these DNNs resemble neural activities
in brains of monkeys responsive to Gestalt illusory stimuli,
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but are quite different from those for non-Gestalt stimuli
[3]. In other words, it demonstrates that DNNs are capa-
ble to exhibit Gestalt illusory contours. Pang et al. conduct
more comprehensive experiments and validate the repro-
duction of similar results [4]. However, specifically-trained
DNNs therein, are intrinsically task-oriented and require a
large amount of prior information to train, thus lacking the
widely existing deconstruction, decomposition and reasoning
capabilities in biological intelligence, [5]. In other words,
it is generally difficult for DNNs to break away from the
characteristics of data and extract hidden characteristics. In
that regard, the aforementioned works [2], [3], [4] do not
consider the Gestalt classification capability of DNNs. On
the other hand, although DNNs trained on non-illusory fat
/ thin rectangles successfully classify testing images of real
and illusory contours, they do not appear to interpolate values
between tangent discontinuities in the same way as human
observers do [6]. Thus, it is generally conceived [6] that
DNNs do not capably perceive illusory contours. Meanwhile,
there are effective means to process the digital images, like
denoising [7], [8], while the classification of Gestalt illusory
contours is unable to be simply understood as the process
of denoising. Thus, instead of directly adopting DNNs, it is
meaningful to introduce bio-intelligence patterns to common
DNNs, so as to discover effective means to perceive Gestalt
illusory contour [9].
On the other hand, the brain is not homogeneous like our

current DNN structure, but has different modules [10]. The
brain’s cognition of a Gestalt image is the result of the col-
laborative work of various encephalic regions. Nonetheless,
it is difficult to simply interpret the relationship between
different parts of the brain [11], [12], [13], [14]. Although
recent progresses have shown that DNNs can extract some
apparent features of EEG signals, such as distinguishing
between normal and abnormal EEG signals [15], [16], they
place too much emphasis on individual differences between
healthy and sick beings. In contrast, TDA is an efficient
method for inferring, analyzing and exploiting the complex
topological and geometric structures underlying the data [17],
[18]. TDA leverages topology and geometry to robustly infer
qualitative and quantitative information about data structure.
It results in either a full reconstruction, often a triangulation,
of the underlying shape of EEG signals, enabling the extrac-
tion of topological and geometric features. Alternatively,
it produces recapitulative summaries or approximations, from
which specific methods like persistent homology (PH) can
extract meaningful information [19], [20], [21], [22], [23].
The extracted topological and geometric information from
EEG signals, which focuses on the group relevance of dif-
ferent regions of the brain, potentially provides new families
of features and descriptors of the data. Inspired by these
promising findings, there emerges a strong incentive to inves-
tigate the performance of the EEG data into DNNs. To ensure
the logic of the experiment, we first should extract effective
features from the unlabeled Gestalt training datasets, and
study the effectivemeans to integrate with unsupervisedDNN

structures. Specifically, in the paper, DeepCluster [9]
and multi-view clustering (MVC, e.g., SiMVC) are used as
benchmarks.

In this study, we present a novel systematic framework to
form algorithmic integration between DNN structures and
intuitive TDA patterns to improve Gestalt illusory contour
perception effectiveness. The framework is further evaluated
with a combination with algebraic topology-deduced EEG
signals. As the block diagrm illustrated in Fig. 1, we argue this
new framework performs more effectively and more flexibly
than conventional DNNs with a large amount of parameters
to calibrate and train. In a nutshell, Table 1 summarizes the
key differences with highly related papers, while our contri-
butions are as follows:

• We leverage two TDA-based metrics (i.e., the Euler
characteristic and persistent entropy) to verify the sep-
arability of EEG responses after observing images with
Gestalt and random patterns.

• For perception of Gestalt illusory contour, we propose a
framework to combine TDA patterns with DNN struc-
tures. Besides, contingent on the separability of EEG
data, we supplement it by algebraic topology-deduced
features from EEG signals.

• Finally, we confirm the effectiveness of the proposed
framework for Gestalt classification task. We demon-
strate that general DNN structures cannot always per-
form this task, and our TDA-based framework obtains
significantly improved performance on Gestalt illusory
contour perception tasks.

The rest of the paper is organized as follows. In Section II
we describe the datasets for analyses and present the prepro-
cessingmeans. In Section III, after introducing the fundamen-
tals of TDA, we discuss the mapping results of EEG data and
present results on the separabilty of EEG data via TDA. In
Section IV, we introduce the topological layer and elaborate
on the DNN structure with this topological layer. The results
of computational experiments are presented in Section V,
which are followed by our discussions and conclusion in
Section VI and Section VII.

II. DATASET DESCRIPTION AND PREPROCESSING
In this section, we provide a brief description of the leveraged
two datasets (i.e., Gestalt image datatset and Gestalt EEG
dataset), and give the data preprocessing method.

A. DESCRIPTION OF DATASETS
1) THE GESTALT IMAGE DATASET
The Gestalt image datasets contain four types of contrast-
ing images, which have been illustrated in Fig. 2. Specif-
ically, Fig. 2(a) and Fig. 2(b) show images consisting of
5, 000 different Gestalt (GST) and random sequence dia-
gram (RSD) images but with line and pancake contours
respectively, whereas Fig. 2(c) and Fig. 2(d) depict images
composed of 5, 000 GST, RSD, and triangle images with dif-
ferent contours. Notably, compared to pancake images, line-
broken images with noise addition may bring about larger
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TABLE 1. The summary of differences with highly related papers.

FIGURE 1. The diagram of EEG signal-assisted DNNs via TDA.

FIGURE 2. An illustration of Gestalt image datasets.

training differences on Gestalt illusory contour perception
tasks. Besides, these images are generated by randomly
adjusting the edge position, length, or angle.

2) THE GESTALT EEG DATASET
Collected from a brain cognition experiment with informed
consent, the Gestalt EEG dataset records the neural activi-
ties of the human brain responding to watching and iden-
tifying the geometric patterns of GST and RSD images,
by using a special cap with sensing electrodes at a sam-
pling rate of 1, 000 Hz. In particular, as depicted in Fig. 3,
20 participants (9 males and 11 females; in an age group
of 19 − 27) with normal (or corrected to normal) vision
were seated in front of a video screen and first watched 30
RSD images and then 10 GST images repeatedly at a fixed
interval (i.e., 10 seconds). For each participant, 64 channels
of electronic data are measured through EEG caps. Hence, the
Gestalt EEG dataset encompasses 20 EEG recordings with
30 and 10 trials of RSD andGST, respectively. The test equip-
ment is Neuracle 64 System (Neuracle product; sensor array:
64-channel adult-sized head cap (i.e., P = 64); EEG
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FIGURE 3. Gestalt EEG datasets and their mathematical representation.

acquisition software: EEGRecorder; amplifier: NSW364; ref-
erence electrode: middle of Cz and Pz).

B. DATA PREPROCESSING
1) PREPROCESSING OF GESTALT IMAGE DATASET
Before mining the topological features, we preprocess the
images to filter and highlight important features. Specifically,
we binarize the image, and map all pixel values to the interval
[0, 1] according to the set threshold, thus highlighting the
outline. Afterwards, we perform the radical filtration [24] to
construct the cubical complexes, by following the l2-norm

distance between a pixel point and the preset center point.
Besides, as discussed lately, the PH can be conducted accord-
ing to the radical distance.

2) PREPROCESSING OF GESTALT EEG DATASET
As for the EEG dataset, the preprocessing includes the fol-
lowing steps:

1) Filtering. The DC component and high-frequency
interference are filtered out by a bandpass fil-
ter, thus removing redundant EEG frequency bands.
The EEG signals of all leads are filtered by a
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digital passband filter and the filtering window is
1 − 45 Hz [25].

2) Trial segmentation. The EEG waveforms recorded in
each trial are segmented according to the starting point
and duration of each stimulus. Besides, a small segment
of the signal before the start of the stimulation time
is generally retained, so as to facilitate the subsequent
baseline determination and calibration of spontaneous
EEG.

3) Artifact removal. In order to combat various artifact
noises such as eye blinks, eye movements, and elec-
tromyograms, trials with amplitude spikes exceeding
a predefined noise threshold are discarded. Besides,
taking account of regional activities of the cognition
process in the human brain, we voluntarily delete the
data of five electrode channels (ECG, HEOR, HEOL,
VEOU, VEOL), and the locations of the remaining
channels are visualized in Fig. 3.

4) Overlay average. In terms of stimulus categories, all
trials within the same category are superimposed and
averaged.

5) Baseline calibration. We take the average of a small
segment of signals before the start of the simulation
time as the baseline, and obtain the corresponding
event-related potential by subtracting the baseline from
the EEG data.

After the preprocessing of EEG signals in Fig. 3, we could
construct an EEG signal matrix by augmenting and normal-
izing singals from 59 electrode channels as

FEEG =

f11 · · · f1Q
...
. . .

...

fP1 · · · fPQ

 , (1)

where Q = 10, 000 denotes the total data length, equal to
the sampling rate multiplied by the measurement time, and
the notation of P is slightly abused to denote the number of
effectively used electrodes (i.e., P = 59).

Next, for topological feature mining, we attempt to
set up a corresponding relationship between the 59 elec-
trode channels. Specifically, for each row vector FEEG(p, :),
∀p = {1, · · · ,P}, we apply a Hilbert transform to obtain
h(FEEG(p, :)). The instantaneous phase of each electrode
φ(p, :) is calculated as

φ(p, :) = arctan
(
h(FEEG(p, :))
FEEG(p, :)

)
. (2)

Subsequently, a correlation matrix M =
[
Mp1,p2

]
∈

RP×P,∀p1, p2 = {1, · · · ,P} is obtained by phase-locking
analysis [26], [27]. In particular,Mp1,p2 is computed as

Mp1,p2 =


1
Q

∣∣∣∣∣∣
Q∑
q=1

exp(j{φ(p1, q) − φ(p2, q)})

∣∣∣∣∣∣ , p1 ̸= p2;

0, p1 = p2,

(3)

where j represents an imaginary unit. Assuming that ifMp1,p2
is greater than the threshold 1 − ε (i.e., the filtration value
discussed below), ∀ε ∈ [0, 1], the electrodes p1 and p2 are
‘‘logically’’ connected; otherwise, they are unconnected.
Thus, a modified correlation matrix M̂ =

[
M̂p1,p2 (ε)

]
can

be achieved with

M̂p1,p2 (ε) =

{ ∣∣Mp1,p2

∣∣ , ∣∣Mp1,p2

∣∣ ≥ 1 − ε;

0,
∣∣Mp1,p2

∣∣ < 1 − ε.
(4)

III. TDA-BASED SEPARABILITY ANALYSIS OF EEG DATA
A. FUNDAMENTALS OF TDA
1) VIETORIS-RIPS COMPLEX
TDA is an emerging research field that studies topological
approaches to explore and provide tight representations of
complex, high-dimensional data [28], [29]. By leveraging the
idea of topology to recognize patterns within data, TDA trans-
forms data into compressed, useful knowledge. Specifically,
TDA uses PH to capture topological features of a space at
different spatial resolutions and enables a fast comparison
of functions defined on the data [30]. To find the PH of
a space, all point cloud data (PCD) in that space could be
filtrated by circles with different radii ε to form a certain
geometric structure called a complex. For example, on top of
the aforementioned modified correlation matrix M̂ , the func-
tional brain network can be filtrated for each value ε ∈ [0, 1]
by assigning an edge between connected electrode channels
p1 and p2 with a non-zero M̂p1,p2 . In other words, as illustrated
in Fig. 4, an undirected graph G(ε) = (V, E(ε)) can be
attained, where V represents the vertex set of 59 correlated
points and E represents the edge set under ε. Furthermore,
a Vietoris-Rips (VR) complex, which belongs to a widely
used simplicial complex to characterize the properties of PCD
[31], can be represented as

R(G(ε)) = V ∪ E(ε) ∪

{
σ

∣∣∣∣ (σ2
)

⊆ E(ε)
}
, (5)

where σ represents any simplex in E(ε) [31]. As the threshold
ε increases, new edges are gradually attached, thereby possi-
bly changing the topology of the constructed networks.

2) HOMOLOGY AND BETTI NUMBERS
Considering the aforementioned VR complex R(G(ε)),
a k-chain ck is a formal sum of the k-simplicies in R(G(ε))
(i.e., ck =

∑nk
i=1 aiσ

(i)
k , where ai ∈ {0, 1}). Besides, there

are nk k-simplicies in R(G(ε)), one of which σ (i)
k belongs to.

Furthermore, the boundary of k-simplex can be defined as the
summation of its k−1-dimensional faces. In other words, for
a k-simplex σk spanned by the vertices v0, · · · , vk ∈ V , its
boundary is defined as

∂kσk =

∑k

i=1
[v0, · · · , v̂i, · · · , vk ], (6)

where v̂i indicates the drop of vi in the summation. For the
k-chain ck , the boundary is the sum of boundaries of its sim-
plicies ∂kck =

∑
ai∂kσ

(i)
k . Therefore, ∂k can be regarded as a

homomorphism from the k-chain group Ck to the k−1-chain
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FIGURE 4. PH and its corresponding PB.

group Ck−1. Meanwhile, a chain complex is the sequence of
chain groups connected by boundary homomorphisms.

After defining Ck , we can present two special types of chain
groups (i.e., the boundary group Bk = im ∂k+1 ⊆ Ck and the
cycle group Zk = ker ∂k ⊆ Ck ), which denote the image set
of Ck+1 and the kernel set to a zero vector (i.e., ∂kZk = 0),
respectively [17], [32]. Notably, as ∂k∂k+1c = 0, the defined
groups are nested as Bk ⊆ Zk ⊆ Ck . Afterwards, another
group (i.e., homology group) can be defined by the quotient
groupHk = ker ∂k/im ∂k+1 [33]. The quotient operation can
be regarded as calculating a special subset (i.e., the kernel
of the boundary operator) and then removing another subset
(i.e., the image of the boundary operator with an increased
dimension) [34]. Equivalently, Betti numbers can be derived
from the rank of the difference between Zk and Bk as

βk = rank (Zk ) − rank (Bk ). (7)

Intuitively, the Betti numbers βk , k ∈ {0, 1, · · · ,K } indi-
cate the number of k-dimensional holes. More specifically,
β0 and β1 denote the number of connected components and
one-dimensional or ‘‘circular’’ holes, respectively.

Recalling the definition of boundary in (6), we can con-
struct a k-th boundary matrix as

∂k =

 a1,1 · · · a1,nk
...

. . .
...

ank−1,1 · · · ank−1,nk

 , (8)

wherein for an ordering pair (i, j) (∀i ∈ {1, · · · , nk−1} and
j ∈ {1, · · · , nk ), ai,j = 1 if and only if the k−1-simplex σk−1

is the face of the k-simplex σk [35]. By elementary row and
column operations, we can get the boundary matrix’s Smith
normal form ∂̂k [36], and have rank(Bk−1) = rank ∂̂k while
rank(Zk ) = rank(Ck ) − rank(Bk−1) = nk − rank(Bk−1).
Correspondingly, for each ε, the Betti numbers can be easily
achieved.

Notably, the VR complex obtained from the filtration [37]
implies the topological structures of data. In mathematical
words, considering the disappearance of old simplicies and
emergence of new ones, the filtration of a VR complex poten-
tially demonstrates the persistence or vitality of the Betti
numbers.

3) PERSISTENT BARCODE AND PERSISTENT DIAGRAM
As mentioned above, the filtration of ε results into different
VR complexes, and correspondingly a simplex (e.g., a hole)
might appear and vanish. As illustrated in Fig. 4, persistent
barcode (PB) is leveraged to characterize this procedure in
terms of bars. Specifically, for a simplex σ persisting from
the birth time ε(birth) to the death time ε(death), the PB is
defined as the multiset of Betti intervals [ε(birth), ε(death)] and
thus capably characterizes the topological patterns of the
functional brain network.
Different from the calculation of Betti numbers from VR

complexes, we start with a complex corresponding to the
largest correlation threshold ε to calculate the PB. In other
words, all the potential simplicies hidden in all ε values are
merged to form a coherent filter stream (or rather, a series of
nested complexes). Furthermore, we order these simplicies as
follows: For a k1-simplex σk1 and a k2-simplex σk2 , the simpli-
cies are first sorted according to the ascending order of k1 and
k2 and the 0-simplicies (i.e., the nodes) are randomly sorted at
first; for equal k1 and k2, the order of simplicies is determined
by its longest (most specific) 1-simplex (i.e., the edge); for
equal longest edges (i.e., their longest edges emerge at the
same value ε), the simplicies are sorted in an ascending
order between the maximum number of nodes. Subsequently,
during the whole filtration range, we can achieve a boundary
matrix ∂ (whole) in which each row and column represents all
emerging ordered simplicies. Similarly, if the k − 1-simplex
σk−1 is the face of the k-simplex σk , the corresponding entry
in ∂ (whole) refers to 1. Besides, we introduce a weight matrix
W =

[
εσ

]
, where εσ records the corresponding value of

ε when σ emerges. Thus, to dig out the birth time ε(birth)σ

and death time ε(death)σ of topological features, we reduce
the matrix ∂ (whole) into a column-echelon form ∂̂ (whole) [38].
Meanwhile, the transformation steps are stored in an auxiliary
memory matrix.

Next, it becomes ready to read and plot the related Betti
intervals [ε(birth)σ , ε

(death)
σ ] of a feature into a PB, by sim-

ply scanning each column from left to right of the reduced
matrix ∂̂ (whole). If the values of a column u (i.e. the index
of the ordered simplicies) are all 0, we resort to lookup the
weight matrix W , and record [εu, inf] as the Betti interval
of the simplex. Otherwise, if a column v contains non-zero
entries (i.e., 1) and the row index corresponding to the last 1
equals u, it means that the simplex generated at εu disap-
pears at εv. Correspondingly, its barcode can be represented
as [εu, εv] (i.e. ε(birth) = εu and ε(death)σ = εv). Mean-
while, a PB can be transformed into a persistent diagram
(PD), which represents topological features as multisets of
points (εu, εv).

B. RESULTS OF SEPARABILITY ANALYSIS
In this section, we boldly conjecture that the EEG data
responding to watching images with Gestalt and random
pattern could be distinguishable and try to testify this. Our
conjecture are significantly motivated by the following direct
findings from Fig. 5:
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FIGURE 5. EEG mapping.

• The brain reacts differently to the perception of images
with different shape and contour, and perceiving images
yields intense brain activities mostly in the frontal lobe,
which is the physiological basis of advanced mental
activities such as planning, regulating, and control-
ling other advanced and purposeful behaviors [39].
Nonetheless, when the brain perceives irregularly dis-
tributed images (i.e., RSD images), more brain regions
are involved, but with nonprominent values. However,
when it perceives implicitly structured images (i.e., GST
images), there emerge clear reaction areas with more
prominent features. Thus, this implies a potential sep-
arability of the two types of EEG signals (RSD & GST).

• The aforementioned observation and the Gestalt law
of closure are also anastomosed, which identifies that,
faced with implicit Gestalt closure, our brain draws
contours by filling in the blanks and creating a unified
ensemble to abate visual noise and convey informa-
tion with reduced dispensable activities and informa-
tion exchange [40]. In other words, it is feasible to
further extract hidden features from algebraic topology-
deduced EEG signals and combine them with DNNs.

Based on the aforementioned findings, we try to prove
the separability of two types of EEG signals (RSD & GST)
in terms of both Euler characteristic and persistent entropy
analysis.

1) EULER CHARACTERISTIC ANALYSIS
Classically, in Hamiltonian function-described exactly solv-
able systems [41], the singularities of the Euler entropy
occurs exactly at the transitions. This result is also con-
sistent with the statement of the Yang-Lee theorem [42],
which states that the singular behavior exhibited by thermo-
dynamic quantities in equilibrium phase transitions coincides
precisely with the zeros of the system’s partition function.
Unfortunately, as for the topological phase transition (TPT) in
complex networks, the Hamiltonian function [41] is usually
missing (or nonexistent). Therefore, instead of studying the
system behavior, intrinsic correlations between the system

components determined from the empirical data are fre-
quently leveraged to define the network topology. In partic-
ular, the Euler characteristic and the Betti numbers emerge
in this scenario as natural quantities to investigate the TPT
point [43], which may further signal a major change in a brain
network.

Generally, each simplicial complex is constituted by its
nodes (k = 0), edges (k = 1), triangles (k = 2), tetrahedrons
(k = 3), and higher k-dimensional parts [43]. Basically,
Euler characteristic numbers ⟨χ⟩ could be calculated as the
alternate sum of the number of k-simplicies (or equivalently
the alternate sum of Betti numbers) [44] as

⟨χ⟩ (ε) =

K∑
k=0

(−1)knk (ε) =

K−1∑
k=0

(−1)kβk (ε). (9)

For example, Fig. 6 illustrates Euler characteristic numbers
under different filtration numbers when K = 3. Correspond-
ingly, the Euler entropy Sχ can be computed as

Sχ (ε) = ln |⟨χ⟩ (ε)| . (10)

Afterwards, the TPT value can be obtained as [43]

εTPT = argmin
ε
(Sχ (ε)). (11)

Therefore, based on the filtrated EEG signals in R(G(ε)),
we apply the aforementioned persistent homology theory and
track the TPT point of every participant. Fig. 7 provides the
corresponding result. It can be observed from Fig. 7 that the
TPT points of GST trials are generally smaller than that of the
RSD, which intuitively shows the separability of the overall
topological characteristics of the EEG signal.

2) PERSISTENT ENTROPY ANALYSIS
Besides Euler characteristic analysis, the persistent entropy
(PE) is also adopted for evaluating whether a filtered sim-
plicial complex is ‘‘ordered’’ based on PBs from an entropy
perspective [45].

Without loss of generality, for any bar i with [ε(birth)i ,

ε
(death)
i ] in the PB, the PE HPE of the simplicial complex
filtration is calculated by the following equation:

HPE = −

∑
i
pi log pi, (12)

where pi =
ε
(death)
i −ε

(birth)
i

L and L =
∑

i

(
ε
(death)
i − ε

(birth)
i

)
.

For cases with a unbounded interval [ε(birth)i , inf), an interval
[ε(birth)i ,m) is used instead, where m = max FEEG + 1 = 2.
Moreover, in order to facilitate the comparison among differ-
ent barcodes, we adopt the stability theorem and normalize
HPE into the interval [0, 1], denoted by Ĥ , and defined as

ĤPE =
HPE

log lmax
, (13)

where lmax denotes the maximum interval in the considered
PB group.

Fig. 8 depicts the respective results and demonstrates an
nearly unanimous difference in the EEG signals responding
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FIGURE 6. Euler characteristic numbers.

FIGURE 7. The topological phase transition point of every participant in
terms of Euler characteristic analysis.

FIGURE 8. The PE of every participant by PH analysis.

to RSD and GST patterns for all 20 participants. Specifically,
almost all the PE values (i.e., 85%) for the topological struc-
ture of the EEG signals induced by RSD are greater than those
induced by GST.

The outcome of Euler characteristic and the persistent
entropy analysis lays the very foundation for the separability
of EEG signals. Meanwhile, it becomes preferential to select
participants whose EEGdata exhibit consistency and leverage
their TDA-processed datasets as the training data to perform
Gestalt classification tasks using DNNs.

IV. THE DNN STRUCTURE WITH THE TOPOLOGICAL
LAYER FOR GESTALT IMAGE CLASSIFICATION
In this part, we give the means to extract topological and geo-
metric features via TDA, and then present a comprehensive
DNN framework with this topological layer.

A. TOPOLOGICAL LAYER
The summary representations (e.g., PBs or PDs) of topologi-
cal features of data, come in an unusual format of multisets,
equipped with computationally expensive metrics. Therefore,
they can not readily be processed with conventional DNNs.
Accordingly, suitable vectorization techniques based on alge-
braic topology ideas [46] are proposed to bridge the gap
between DNNs and TDA, which leverage advances in repre-
sentation learning viaDNNs. The core idea is to project points
in a barcode by a collection of parametrized functionals,
so called ‘‘structure elements’’ [47].

In particular, we start by rotating the points of PD by ψ ,
that is

ψ : (ε(birth)i , ε
(death)
i ) 7→ (ε(birth)i , ε

(death)
i − ε

(birth)
i ), (14)

so as to ensure that the x-axis still represents the birth time
of topological features, whereas the y-axis can then be inter-
preted as the persistence of features [48].

Afterwards, on top of ψ , we introduce another
transformation

ϕξ (x0, x1) =


(x0, x1) , x1 ∈ [ξ,∞)

(x0, 2ξ −
ξ2

x1
), x1 ∈ (0, ξ)

0, x1 = 0

(15)

towards the points x = (x0, x1) = (ε(birth)i , ε
(death)
i − ε

(birth)
i ),

where ξ represents the threshold at which the transforma-
tion starts to operate. Since each PD contains points at the

96036 VOLUME 11, 2023



F. Ni et al.: EEG Signal-Assisted Algebraic Topological Feature-Enhanced DNNs

FIGURE 9. Experiment framework. (a) The architecture of DeepCluster. (b), (c) Topological layer with DeepCluster.

diagonal with infinite multiplicity [47], the transformation
stretches the space between the x-axis and the line drawn at
x+ξ to infinite length, so as to guarantee Lipschitz continuity
of all proposed structure elements. In this study, ξ = 0.1.
Following the transformation, we further add a rational hat

structure element [47]

tµ,r (x) =
1

1 + ||x− µ||2
−

1
1 + ||r| − ||x− µ||2|

. (16)

In a nutshell, the rational hat structure element, whose max-
imum is reached when the distance of a point to µ is r ,
can be regarded as a collection of parameterized function.

By implementing the vectorization of a PD, it yields a
more balanced gradient scaling behavior [47], [48]. These
vectorizations are then fed to a DNN, e.g., a discriminant
classifier. Notably, the parametrization tµ,r is learned during
the training and allows to obtain a task-specific vectorization
of barcodes.

B. DNN STRUCTURE
As for the DNN structure, we use the classical unsuper-
vised classification architecture DeepCluster [9], shown
in Fig. 9(a), as a benchmark. In order to generate the initial
labels for training, we can leverage the available pre-trained
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models such as AlexNet [49] and VGG-16 [50].1 Specif-
ically, we first take images as input and feed forward the
DNN model. Correspondingly we construct a feature matrix
of images by exploiting the final average pool layer. Then,
we reduce the dimension of the featurematrix by the principal
component analysis (PCA). In order to perform the classifi-
cation, K -means clustering with K = 2 is applied to produce
the clustering results.

In terms of complexity and completeness, we add the
topological layer to DeepCluster incrementally.

• We introduce TDA-processed data into DeepCluster
(TFD-DC for short). Specifically, the DNN structure
remains the same. However, as depicted in Fig. 9(b),
the Gestalt image datasets will be further processed by
filtration to obtain the corresponding VR complex and
the PD. The PD would become the inputs of the DNN.

• TDA-processed EEG data are introduced into
DeepCluster (ETFD-DC for short). As shown in
Fig. 9(c), the EEG patterns chosen in terms of PE are
supplemented to Gestalt image datasets as a whole,
while the processing method remains the same. The
pseudocode of ETFD is shown in Algorithm 1.

V. EXPERIMENTAL RESULTS
In order to reflect the effectiveness of TDA, we perform the
Gestalt classification task and evaluate the performance on
the basis of DeepCluster (with either AlexNet [49] or
VGG-16 [50]) and MVC [51].

FIGURE 10. The persistent entropy of Gestalt image datasets.

During the training, the consistency between the cluster-
ing results and the original labels (with distributions δ1 and
δ2 repectively) are measured by the evolution of the nor-
malized mutual information (NMI). Specifically, NMI is
computed as NMI(δ1; δ2) =

MI(δ1;δ2)√
HSE(δ1)HSE(δ2)

where MI(δ1; δ2)
denotes the mutual information and HSE(·) denotes the Shan-
non entropy. If δ1 and δ2 are independent, the NMI is equal
to 0; while if one can be deterministically predictable from
the other, the NMI is equal to 1 [9], [52]. The DNN is trained
with dropout, a momentum of 0.9 and an l2 penalization of

1Notably, other DNN structures can be leveraged as well and shall be
further detailed in Section V.

Algorithm 1 ETFD for Gestalt Illusory Contour
Classification
Input: Gestalt EEG datasets, filtration dimension k .
Output: Clustering results.

1 Initialize nodes V , edges E , weightsW ;
2 Compute corresponding correlation matrixM of

Gestalt EEG datasets as in Eq. (3);
3 Update V, E with correlation MatrixM ;
4 for k ∈ [0, 1] do
5 if k = 0 then
6 Initialize simplex σk with V;
7 Add σk to σ ;
8 Update corresponding value inW with 0;
9 else if k = 1 then
10 Initialize simplex σk with E ;
11 Add σk to σ ;
12 for ε ∈ (0, 1) do
13 Update modified correlation matrix M̂

with Eq. (4);
14 Update corresponding value inW with M̂ ;
15 end
16 end
17 end
18 Construct complex R with Eq. (5);
19 Update the boundary matrix ∂ (whole) by extending

Eq. (8) to characterize the whole filtration range;
20 Reduce the matrix ∂ (whole) into a column-echelon

form ∂̂ (whole);
21 Update birth time ε(birth)σ and death time ε(death)σ of all

simplices with ∂̂ (whole);
22 Update (x0, x1) with persistence (ε(birth)σ , ε

(death)
σ );

23 Vectorize (x0, x1) with composite mapping consists of
rotation ψ (i.e., Eq. (14)), transformation ϕ
(i.e., Eq. (15)) and structure element t (i.e., Eq. (16));

24 Input the extracted feature (x0, x1) to the DNNs
(e.g., DeepCluster, MVC);

25 Reduce the feature dimension from the average pool
layer of the model by PCA;

26 Classify the features by K -means clustering.

the weights θ . Each mini-batch contains 100 images.We train
the models for 100 epochs. We choose 5-fold cross validation
and summarize the main hyperparameter in Table 2. All
experiments have been implemented in PyTorch and run on
NVIDIA GeForce RTX 3090. The final performance evalua-
tion is chosen as the average value of five tests.

TABLE 2. The default hyperparameter settings.
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FIGURE 11. The comparison of the clustering quality.

FIGURE 12. The comparison of the classification accuracy of two
categories of EEG data (i.e.,the entire group and participants whose EEG
data exhibit consistency in the entire group).

Beforehand, the PE results of Gestalt image datasets
are given in Fig. 10. Specifically, the PE values of the
RSD images are greater than those of GST and triangle
images, thus verifying the separability of TDA-extracted
features. Hence, it re-confirms the feasibility to combine
TDA-processed datasets with DNN structures.

Fig. 11 presents perception capability in terms of NMI.
Besides, Table 3 summarizes the evaluation accuracy of
the aforementioned methods and validiate this observation.
Consistent with works which have shown DNNs cannot
always perceive illusory contours [2], [6], the results of
DeepCluster in Fig. 11 and Table 3 illustrate relatively
worse perception performance in terms of the NMI and the
classification accuracy. Meanwhile, the results also suggest
that DeepCluster with VGG-16 outperforms that with
AlexNet. Therefore, the following experiments are primarily
based on DeepCluster (VGG-16).

TABLE 3. The comparisons of classification accuracy of different methods
based on DeepCluster.

The contribution of TDA to DeepCluster can be fur-
ther verified in terms of the classification efficacy and false
alarm ratio. From Table 3, we can conclude that TFD-DC
significantly outperforms DeepCluster because TFD-DC

TABLE 4. Comparisons of false alarming ratio of different methods.

TABLE 5. Comparisons of classification accuracy under different
dimension no. of PCA.

TABLE 6. The comparisons of classification accuracy of different methods
based on MVC.

incorporates additional topological and geometric features.
Specifically, for the Dataset IV, the maximum improvement
in classification accuracy (i.e., 4.93%) can be expected.
Therefore, the integration of TDA and DNNs can improve
the perception of the illusory contour to a certain extent.
Furthermore, adding the EEG signal extracted from the visual
experiment further improves the accuracy. For example, for
Dataset II, the accuracy boosts from 66.5% to 71.9%, indicat-
ing that the features extracted from EEG signals more accu-
rately reflect the topological differences. Besides, as depicted
in Fig. 11, as the iterations evolve, ETFD-DCwithmore suffi-
cient topological features prominently capture the difference
between GST and RSD in a more accurate manner. On the
other hand, it can be observed from Table 4 that our method
can lead to least false alarming ratio. The comparisons of clas-
sification accuracy under different settings of PCA (i.e., the
dimension to whcih a feature matrix of datasets reduces) is
also discussed in Table 5, which shows that it’s more reliable
to set the value as 200.

As for latest unsupervised learning structures, SiMVC
[51] shows remarkable perfomance on many datasets [53].
Hence, Table 6 gives the comparison with the SOTA method
(i.e., SiMVC) on top of MVC. From Table 6, it’s evident that
EEG signal-assisted algebraic topological feature-enhanced
MVC (ETFD-MVC) outperforms SiMVC, especially on
Dataset IV. This highlights the beneficial impact of alge-
braic topology-deduced EEG signals on the classification of
Gestalt illusory contours.

We also explore the impact of the quality of EEG signals by
selecting a subgroup of participants with consistent EEGdata.
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TABLE 7. Comparisons of running time of different methods.

Fig. 12 presents the related accuracy. It can be observed that
given the difference (D-value) in Fig. 12(b), the classification
accuracy can be further improved when the selected consis-
tent EEG data are used to train the ETFD-DC. In other words,
the higher quality of EEG data promotes the improvement of
performance.

Fig. 13 depicts the accuracy for all four datasets with
respect to the number of the structure element and demon-
strates that a larger number of structure elements produces
superior performance. Together with Fig. 14, an illustration
of structure elements centered at µ = (1, 1), it provides the
guidance to set the number to 100.

FIGURE 13. The accuracy on four datasets in Fig. 2 as a function of the
number of the structure element.

FIGURE 14. An illustration of structure elements centered at µ = (1, 1).

Finally, the comparison of running time (h) on NVIDIA
GeForce RTX 3090 is provided in Table 7. It can be observed
that introduction of the topological layer adds trivial time for
training.

VI. DISCUSSIONS
DNNs exhibit remarkable performance on many types of
classification problems, especially in computer vision and
natural language processing [49]. The basic architecture
of DNNs resembles the human brain networks on many
performance-based measures, and many studies have been
conducted to evaluate the similarity between DNNs and
human perception [2]. The Gestalt principles describe how
visual elements are grouped and interpreted [54], [55], [56].
For example, the Gestalt principle of closure asserts that
human visual perception tends to ‘‘close the gap’’ by group-
ing elements that can jointly be interpreted as a complete
figure or object [2]. Thus, this principle provides a basis for
predicting how humans will parse, interpret, and attempt to
display fragments. In the case of illusory contours like Gestalt
images, the representations of humans and artificial DNNs
behave very differently, as DNNs do not appear to interpolate
between tangent discontinuities in the same way as human
observers do [57].

In this work, we introduce EEG signals as additional input
for DNNs. EEG signals capture changes in electric waves
during brain activity and are an overall reflection of the
electro-physiological activities of brain neural cells on the
surface of the cerebral cortex or scalp [58]. In essence, we first
analyze the EEG signals via algebraic topology. The core
idea is to project points into a series of PBs by filtrating the
corresponding correlation matrixes, and adopting a collec-
tion of parameterized functional, or the so-called structure
elements. The parametrization is learned during the training
and allows to obtain a task-specific vectorization of PBs.
Besides, the results verify its effectiveness in improving the
performance of DNNs to perceive Gestalt illusory contours.
Although it is limited to the performance of DNNs with
the EEG signals, TDA-based processing methods that filter
images by algebraic topology seem to be superior than DNNs
in terms of the accuracy in classifying Gestalt and random
images. It can be also observed that supplementing images
by EEG signals with consistent and clear differences in terms
of topological phase transition point or PE from the field of
algebraic topology can further improve the performance of
the DNN.

VII. CONCLUSION AND FUTURE WORKS
In the study, towards the perception of illusory contour,
we have made comprehensive analyses toward the topo-
logical features of EEG signals responding to watching
images with Gestalt and random patterns. Contingent on a
series of TDA-based analyses including Euler characteris-
tic analysis and persistent entropy, we have confirmed the
separability of these EEG signals. Furthermore, considering
general DNN structures’ incapability to possess the percep-
tual ability, we have combined TDA patterns with popular
DNN structures (i.e., DeepCluster, SiMVC and CoMVC).
Extensive simulation results unveil that feeding algebraic
topology-deduced features from images and EEG signals
as inputs to the TDA-based DNN significantly enhances its
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ability to perceive illusory contours, resulting in improved
classification accuracy. This indicates that TDA can be ben-
eficial for understanding human perceptual capability in a
solid manner.

In addition, EEG signal-assisted algebraic topological
feature-enhanced DNNs’ performance is limited to the quan-
tity and quality of involved EEG signal datasets. Neverthe-
less, it is very cost-ineffective to record human brain activities
for various visual categories. Besides, the human ability to
detect, discriminate, and recognize perceptual visual stimuli
is influenced by both visual features and people’s prior expe-
riences. In this regard, in order to obtain more improvement,
our ongoing research leverages a mixture-of-product-of-
experts formulation, which helps to infer a latent embedding
for a coherent joint generation of two modalities and learn a
more consistent joint representation. Therefore, our method
promises to benefit from the relationships between brain
activities and visual features via multimodal deep generative
models, so as to improve the data efficiency in the case of
limited brain activity data.
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