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Abstract
Modern communications are usually designed 

to pursue a higher bit-level precision and fewer 
bits while transmitting a message. This article 
rethinks these two major features and introduc-
es the concept and advantage of semantics that 
characterizes a new kind of semantics-aware com-
munication framework, incorporating both the 
semantic encoding and the semantic communi-
cation problem. After analyzing the underlying 
defects of existing semantics-aware techniques, 
we establish a confidence-based distillation 
mechanism for the joint semantics-noise coding 
(JSNC) problem and a reinforcement learning 
(RL) powered semantic communication paradigm 
that endows a system the ability to convey the 
semantics instead of pursuing the bit level accu-
racy. On top of these technical contributions, this 
work provides a new insight to understand how 
the semantics are processed and represented in a 
semantics-aware coding and communication sys-
tem, and verifies the significant benefits of doing 
so. Targeted on the next generation’s seman-
tics-aware communication, some critical concerns 
and open challenges, such as the information 
overhead, semantic security, and implementation 
cost are also discussed and envisioned.

Introduction
The core of communication is to send and receive 
useful messages. Till now, the most convincing 
metric used to evaluate a communication system 
is bit error rate, which encourages an exact recur-
rence of what has been sent from the transmitter. 
Though this long-established practice is reliable, 
it can result in two potential issues: the encoded 
bit flow may get wasted on the less important or 
redundant information; and the decoded message 
may not express the true and important mean-
ing of what is expected to send. The information 
waste and tremendous overheads in our com-
munication systems, as we can foresee in the fol-
lowing decades, inspire us to rethink and reshape 
the way we view our communication system, in a 
semantics-aware manner.

As our primary goal, the idea of meaningfully 
transmitting messages was discussed as early in 
1949 by Weaver, who extended Shannon’s theo-
ry to two extra levels: the semantic level and effec-
tive level [1]. A semantic communication system 

is targeted to transmit the semantic information, 
while an effective one further pursues an efficient 
and goal-oriented system design. After Weaver, 
some early researches on semantic information 
were thereafter proposed [2]. Unfortunately, the 
idea of communicating semantics did not gain 
much attention at that time due to the urgent 
need of Shannon’s high-rate reliable communica-
tion and the lack of opportunity and computing 
resources to unfold the next level. However, at 
the time when high-rate reliable communication is 
no longer a critical barrier to communicate, as in 
beyond 5G (B5G) and targeted 6G era, a seman-
tics-aware and efficient communication scheme is 
now gaining much more interest.

In recent few decades, researches on seman-
tics-aware communication are first advanced by 
progresses on semantic information theory [3, 4]. 
Some key features adopted in subsequent works, 
such as shared common knowledge, goal-orient-
ed schemes, and efficiency issues were declared. 
These innovations, along with recent theoretical 
conceptions [5, 6], gradually sketch the portrait 
of modern semantics-aware communication struc-
ture. The semantic abstraction nature also sug-
gests that exploring the underlying semantics is 
promising to provide a new solution to efficient 
communication, which is usually designed from 
the service and energy-utility perspective [7, 8], 
and become the critical cornerstone for next lev-
el’s goal-oriented communication.

Nevertheless, practical semantics-aware com-
munication systems remained less-explored until 
the last four to five years when machine learn-
ing-based calculation, typically the joint source 
and channel coding schemes (see the left part in 
Fig. 1), became the experimental trend [9, 10]. 
Among these works, recent research interests in 
semantics-aware communications can be rough-
ly divided into two branches: semantic coding 
and semantic communication. The former cate-
gory concentrates on a reliable and efficient trans-
mission by reducing the length of bits flow or to 
secure a higher bit accuracy rate [11, 12], where 
the latter is targeted to transmit semantic mean-
ings (typically not designed for a higher bit-level 
accuracy but for a semantics or goal-execution 
purpose) [13], as illustrated in the right part of Fig. 
1. Here it is noteworthy to point out that semantic 
coding and semantic communication are not the 
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same concept, although they are often treated the 
same in the literature. Besides semantic coding to 
pursue a simple recurrence on the receiver side, 
a semantic communication system still requires 
appropriate semantic metrics that guide it toward 
a semantic level expression (i.e., a redesign on the 
learning objective).

Although existing works provide plausible solu-
tions for semantics-aware communication, the draw-
backs of these existing methods are also evident: 
•	 For the communication purpose, the key com-

ponent of wireless communication — the vary-
ing channel state is significantly simplified into a 
fixed-level AWGN one and not considered care-
fully (we call this a communication problem).

•	 For the semantics purpose, existing works either 
rely on NLP (Natural Language Processing) 
models to obtain a semantics-aware represen-
tation ability instead of carefully rethinking the 
final goal of semantics transmission, or are too 
preliminary for a large-scale generalization [13] 
(we call this a semantic problem). This article 
aims to provide a holistic view on the seman-
tics-based communication methods and pres-
ent our new solutions to these interesting yet to 
be solved problems.
As to the first problem, we introduce in this 

article a JSNC mechanism, so as to automatical-
ly adjust the depth of semantic representations, 
according to the varying channel state and vary-
ing sentences with different semantic structures. 
As to the second problem, we further put forward 
a semantic communication system that directly 
learns from the semantic similarity instead of the 
semantics-blind cross entropy (CE) loss or mean 
squared error (MSE), where the semantic similar-
ity could be any task-specified and even non-dif-
ferentiable one.

Semantic Coding: A Confidence-based Joint 
Semantics-Noise Coding (JSNC) Manner

Overview of the Proposed JSNC Method
We provide an overview of the proposed JSNC 
system in Fig. 2. JSNC is significantly different from 
existing semantic coding ones in two ways: it is 
designed to address the varying channel situations, 
which is usually ignored or simplified previously. 
Also, JSNC develops an interpretable mechanism 
that allows to understand why the proposed solu-

tion is semantics-aware, and how it interprets the 
semantic meanings. To achieve the first goal, we 
propose a distillation mechanism that refines the 
embeddings in the encoder and decoder, which 
endows the transceiver a proper semantics-ex-
traction capability to adjust to different sentences 
and channel situations. As to the second goal, a 
confidence-based mechanism that evaluates the 
quality of semantic representation and guides the 
distillation mechanism is further introduced.

Semantic Confidence Mechanism
Human beings can hardly understand the seman-
tics of different sentences at only one glance. This 
is because the semantic structures can be differ-
ent even when these messages indeed tell the 
same thing. To express a concept also deserves 
multiple times of processing and correcting. A 
semantic model, by analogy, also faces the same 
challenge. Therefore, to model the continuity 

FIGURE 1. An overview of the joint source and channel coding scheme, and the semantics-aware communication tasks. Left part: basic 
joint source and channel coding (JSCC) schemes. Middle part: illustration of the targeted communication and semantic problem. 
Right part: the corresponding solutions.
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of semantics expressing and understanding, we 
enable a model to evaluate its semantic embed-
dings in both encoder and decoder by the means 
of semantic confidence. When the semantic confi-
dence reaches a pre-defined threshold, the model 
releases the processed information for a further 
down-stream processing. Otherwise, the semantic 
confidence module sends the embeddings back 
to the distillation part and asks for a refinement.

Semantic Distillation Mechanism
The distillation mechanism allows a message to 
be encoded and decoded multiple times under 
a from-coarse-to-fine structure. The detailed distil-
lation steps are illustrated in the purple and blue 
blocks in Fig. 2. In a practical system, the semantic 
confidence module and basic encoder/decoder 
can usually be implemented as artificial neural 
networks. Once a given message is projected into 
the feature space (shown in the orange part in 
Fig. 2), the distillation process starts until reaching 
the maximum distillation times N (representing 
the cognition ability of a given system) or when 
the system believes that the semantic extraction 
is ready for a further processing. In this way, 
we encourage the model to generate a higher 
confidence value, as mentioned in the semantic 
confidence mechanism, that indicates whether 
the encoding or decoding procedure is sufficient. 
The proposed semantic distillation mechanism 
automatically adjusts the distillation times so as to 
deal with sentences with both “hard” and “easy” 
semantics, and reacts to the varying channel state 
in an adaptive way.

Implementation Cost and Computational Complexity
One major concern of the proposed JSNC 
approach comes from the computational and 
implementation cost. Here, we take the com-
monly-studied sentence transmission task as an 
example. Denoted by L the sentence length, and 
D the embedding dimension, the computational 
complexity for semantic confidence mechanism is 
O(LD), which is almost negligible when compared 
with that of a basic encoder such LSTM (O(LD2)) 
and Transformer (O(L2D)). The major computa-
tions come from the N-times semantic distilla-
tion process. It adds the complexity with a linear 
factor N, same as existing recurrent transmission 
schemes like HARQ [14]. The extra computation-

al cost can be viewed as a case where more com-
putations are adopted to save the transmission 
time and to pursue a higher accuracy. Howev-
er, compared with HARQ schemes which have 
the O(N) time complexity (N-times transmission 
over a channel), JSNC will always take the O(1) 
complexity since the distillations all happen at a 
local machine. For implementation purpose, the 
proposed approach is also backward compatible 
with existing infrastructures and does not require 
an elaborately designed protocol.1

Semantic Communication: Similarity-targeted 
Semantics-persevering Communication (SSC)

Distinguished from semantic coding, a semantic 
communication system aims to convey the seman-
tic meanings. Consequently, the commonly used 
CE loss, or MSE, is flawed as it treats each bit (or 
word/pixel) with the same weight, which is incon-
sistent with the nature of languages or other kind 
of messages. To enable a semantics-level trans-
mission, we put forward a new learning scheme 
for semantic communication that minimizes the 
semantic distance, or maximizes the semantic sim-
ilarity of the sent and received messages.

The overview of our SSC model is illustrated in 
Fig. 3. Here we take into account both the differen-
tiable and non-differentiable situations.

Semantic Communication with  
Differentiable Semantic Similarity (SSC-D)

When a semantic similarity metric is differentiable 
w.r.t. the message, the gradient will back-propa-
gate through the whole transceiver without any 
difficulty. In this case, we can simply define the 
semantic distance as one negative to the similarity 
metric. For an applicable communication system, 
this problem then requires a task-specific semantic 
similarity metric, so long as it is differentiable. For 
example, we can only transmit the semantically 
salient parts or the region-of-interest parts using 
the off-the-shelf computer vision or natural lan-
guage processing tools, where a masked MSE or 
CE loss can serve as the semantic distance, like 
what we usually do in semantic compression and 
semantic/instance segmentation. Since the spe-
cific similarity measurement is heavily reliant on 
the given task, and the gradient back-propaga-
tion process will not face any difficulty, we will not 

FIGURE 3. Architecture of the proposed similarity-targeted semantics-persevering communication (SSC) 
mechanism. By setting the reward function as the expected semantic similarity, a reinforcement learn-
ing (RL)-based training scheme is further developed to provide gradients for the established learning 
system. These gradients are targeted to steer the whole system into a policy improvement, which ulti-
mately lead to a semantic communication system customized by the user.
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give a detailed discussion here. To the best of our 
knowledge, existing works on semantic commu-
nication mostly fall into this category. Instead, we 
are more interested in the challenging non-differ-
entiable situation, which has never been typically 
investigated in existing JSCC works.

Semantic Communication with  
Non-differentiable Semantic Similarity (SSC-ND)

In real-life scenarios, however, not all semantic 
metrics are differentiable, and should be treated 
with a suitable design. Here again we take the 
sentence transmission task as an example. The 
widely-used NLP metric like Bilingual Evaluation 
Understudy (BLEU), which is also used to evaluate 
a semantic coding system in existing works as in 
[12, 14]), is based on the statistical structure infor-
mation of two paired sentences, and is not differ-
entiable. The commonly used gradient descent 
method is intractable to implement as a result, 
and so are the existing deep learning-based JSCC 
systems, like [9, 10, 12]. In fact, non-differentia-
ble cases may even be more frequently seen and 
make this problem more urgent and important.

To address this non-differentiable problem, a 
direct and naive solution would leverage surrogate 
loss functions. However, one may need to redesign 
a new surrogate module every time the environ-
ment or similarity metric changes, and the con-
crete implementation also requires much expert 
knowledge. Although substituting the non-differ-
entiable part is promising to provide a quick and 
light-weight solution, the surrogate process is not 
universal and lacks scalability in real applications. 
Instead, we establish a reinforcement learning (RL)-
based solution as depicted in Fig. 3, which provides 
a model-agnostic, target-agnostic, and, therefore, a 
universal solution for both the SSC-D and SSC-ND 
problems.2 As a well known technique, reinforce-
ment learning leverages the reward function to 
encourage an agent to take optimal actions in an 
interactive environment. In this situation, the reward 
function is defined as any one that takes a scalar 
value as the output, thus relaxing the need for its 
differentiability. The goal of reinforcement learning 
is to maximize the cumulative reward, which in our 
case is the semantic similarity. Equipped with RL, 
we now turn the nontrivial problem into two more 
friendly sub-problems: how to define an RL process 
for the semantic encoding-decoding process (more 
precisely the decoding process as it decides which 
semantic token to generate) and how to develop 
a specific learning algorithm. The whole processes 
transforming a common semantic communication 
problem into an RL-based one can be summarized 
in the following steps, as illustrated in Fig. 3:
Step 1: define a proper semantic similarity score.
Step 2: transform the learning problem into a rein-

forcement learning problem.
Step 3: optimize the accumulated reward function 

in an RL-based way.
Similar to SSC-D, defining a proper semantic 

similarity follows the common procedure; thus we 
will not detail it here. For Step 2, we consider the 
sentence and image transmission tasks, as they are 
the most commonly seen scenarios. To define the 
state in an RL-based process, the decoding process 
needs to be first transformed into a recurrent pro-
cess. This is easy for a sentence as we can directly 
use the hidden state of decoder and the previously 

generated words as the state. But for images, the 
original pixel-level regression pipeline no longer 
holds under an RL setting. Here we exemplify a pix-
el-level recurrent decoding scheme by increasing 
or decreasing the pixel value with a small number 
so that the state can be defined as the intermediate 
decoded image. Transforming a regression-based 
decoding scheme into an RL-based one is also fea-
sible to implement in practice but only requires 
more decoding times. We need to note that 
although this RL procedure is designed for non-dif-
ferentiable reward functions, it is also applicable to 
integrate with differentiable ones, and makes it a 
general-purpose solution for semantic communica-
tion. For Step 3, we argue that plenty of existing RL 
algorithms can be used. As in the case of both the 
sentence and image transmission tasks for exam-
ple, an actor-critic RL method is found to be effec-
tive and simple enough for implementation.

The Information Overhead
In this subsection, we analyze the information 
overhead imposed to the proposed semantic 
communication system. Considering a specific 
communication scenario, we can divide the infor-
mation overhead into three parts:
Semantics Part: It is the amount of information 

necessarily required to convey the semantic 
meanings.

Recurrence Part: On top of the semantics part, 
the extra information needed to enable a pre-
cise recovery (that enables a perfect bit-level 
accuracy).

System Part: Some content-agnostic parts which 
are regarded as the system burden.
The most significant feature that characteriz-

es semantic communication lies in that only the 
semantics part is necessarily needed to trans-
mit, which indicates semantic communication is 
beyond Shannon’s reliable communication [5] 
and theoretically brings a lower information over-
head. It is noteworthy that the proposed RL-based 
SSC system provides the first universal and practi-
cal solution towards this goal, and can therefore 
achieve superior performance if under the same 
overall information overhead. In contrast, the con-
ventional reliable communication can be viewed 
as a special case of semantic communication, 
where all the bits are recognized as necessary 
without a semantics-particular consideration.

In a practical semantic communication system, 
the process of semantics extraction also con-
sumes certain computational resources and brings 
extra informational computations locally. As we 
will show in the experimental results, the pro-
posed SSC scheme better conveys the semantic 
meanings when compared with the conventional 
model under the same information and computa-
tion overhead.

Case Study

Datasets
We use European-parliament as the dataset for sen-
tence transmission, and CIFAR-10 for image trans-
mission. Apart from these existing datasets, we also 
propose a new real communication scenario to 
examine the performance of semantics-aware com-
munication, which we call “speak something.” We 
carry numerical experiments on both the AWGN 

To address this non-dif-
ferentiable problem, a 
direct and naive solu-

tion would leverage 
surrogate loss functions. 

However, one may 
need to redesign a new 
surrogate module every 

time the environment 
or similarity metric 

changes, and the con-
crete implementation 

also requires much 
expert knowledge.

2 RL is one of the possible 
approaches, and one may 
also investigate some other 
solutions. It is also plausible 
to use surrogate ones if 
tested promising. Using 
RL may introduce minor 
changes to the original model 
architecture (see SSC-ND in 
the image transmission task 
below).
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and phase-invariant fading (denoted as FIF in this 
article) channels, however, for demonstration pur-
pose, we do not use any channel adaptation tech-
nique, though we note some other channels and 
adaptation techniques are also plausible and can 
better complement our solutions to simulate the 
real wireless communication scenarios.

semAntIc codIng
We focus on the commonly-used European-par-
liament dataset for the semantic coding task. A 
Transformer structure is adopted as the basic 
encoder since it has shown great performance 
in existing works [12, 14]. First we provide a 
holistic view on the proposed confi dence-based 
distillation technique in Fig. 4a–b, where one 
can obviously find that the proposed joint 
semantics-noise coding method shows its supe-
riority over the rigid one-time encoding-decod-
ing schemes consistently, and further reduces 
the bits required for an acceptable transmission. 
Under a 10dB AWGN channel, for example, 
the proposed distillation process (i.e., TF+Conf) 
achieves a word error rate of 0.038 percent, 
which is 24 percent lower than the Transformer 
baseline (i.e., TF), and significantly lower than 
the conventional separate encoding-decoding 
method, like Reed-Solomon (RS) code of 5-bit 
fi xed length. When tested on the phase-invariant 
fading channel as illustrated in Fig. 4b, the model 
is still robust when compared with that without a 
distillation mechanism.

Aside from the numerical simulation results, 
we provide a detailed insight into the seman-
tics-noise-robust coding mechanism, showing how 
the model interprets the semantics and why it is 
semantics-aware. First, we find that the model 
learns to pay more attention to those with more 
complex semantic structures, where the distil-
lation time positively changes as the sentence 
length increases, as shown in Fig. 4c–d. More-
over, when the channel state degrades in terms 
of SNR (signal-to-noise ratio) level, the proposed 
JSNC mechanism succeeds in performing more 
distillations to adaptively explore a more in-depth 
semantic representation, which is similar to what 
we do as humans. Typically, we find that an FIF 
channel generally leads to a higher distillation 
times than an AWGN one, which also suggests 

that the proposed JSNC approach better captures 
the semantics under a more complex channel 
state. Also, we note that under extreme cases, 
where the useful information is submerged in 
large random noise (Fig. 4d), the distillation times 
tend to saturate because learning the semantics 
gets much more diffi  cult.

semAntIc communIcAtIon
We exemplify two widely-investigated scenarios, 
that is, the sentence and image transmission tasks 
(Fig. 5a and b respectively) to illustrate the feasibil-
ity of developing such a semantic communication 
system, regardless of the diff erentiability of seman-
tic similarity. We set the reward function for the 
sentence transmission task as the CIDEr-D (CIDEr: 
Consensus-based Image Description Evaluation) 
score and MSE gain (the present MSE score ver-
sus the MSE value in the next time step, so that a 
positive MSE gain means a quality improvement) 
for the image paradigm. An actor-critic algorithm 
is used to provide the gradient for the whole sys-
tem in a self-supervised way. In Fig. 5, the training 
reward under a 10dB AWGN channel is reported 
in the orange lines, and that under FIF channel is 
given in green lines. We only plot the training loss 
under AWGN channel for fi gure tidiness.

As we can observe from the learning curves in 
Fig. 5, the proposed SSC-ND approach jumps out 
of the initial local minima and converges stably as 
training proceeds, which convincingly illustrates 
the feasibility of this innovation. With SSC-ND, we 
enable the communication system to develop a 
semantics-level ability and dive into a deeper level 
of communication. It minimizes the semantic dif-
ference of any two messages, instead of securing 
a bit-level accuracy. We note that training under 
the phase-invariant fading channel brings more 
challenges for the learning system, but the pro-
posed approach can still behave properly. These 
observations point out that the proposed seman-
tic communication approach is also robust and 
promising if deployed in real scenarios.

To further understand and certify the eff ective-
ness of the proposed semantic communication 
system, we provide some examples on the sen-
tence-based model in Table 1. The same neural 
network trained on the conventional cross entro-
py loss is adopted here as the baseline, and we 

FIGURE 4. Numerical results of the proposed confi dence-based joint semantics-noise coding mechanism: a) and b) exhibit the word 
error rate versus the examined SNR level in AWGN channel and phase-invariant fading (FIF) channel respectively; c) and d) show 
the average distillation times when tested under diff erent input sentences and channel states.

3 Due to the page limit, we 
give two examples each.
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feed the same sentence multiple times to diminish 
the impact of channel noise.3 We fi nd that by min-
imizing the semantics-level distance, the model 
develops an interesting pattern that differs sig-
nificantly from the conventional model. It favors 
words and phrases with similar meanings at the 
expense of certain degradation in bit-level accura-
cy, and favors sentences more likely to happen at 
the semantic level. In Table 1a, for example, the 
proposed model better captures the key mean-
ings, like “understand” and “communication sys-
tem,” while the baseline model distorts what we 
want to express severely. We also find that our 
model can properly choose a similar word even 
an error does occur, like substituting “claimed” 
into “says” in Table 1b. Even under extreme con-
ditions where a semantically insane sentence is 
exposed, the system, SSC-ND, can still exhibit a 
robust performance and better catches the key 
idea, as illustrated in the last example of Table 1.

reAl communIcAtIon scenArIo: sPeAk somethIng
Aside from the above experimental results, we 
further introduce a new communication scenario 
in this article to examine both the performance 
and effectiveness of the proposed approaches. 
Our inspiration comes from a commonly played 
game, “draw something” (or “speak something”), 
which requires a speaker to depict a given object 
to a remote listener, but does not allow the speak-
er to directly tell what it is. In our experiment, 
the listener is allowed to make three different 
final assumptions, which are sorted in descend-
ing order of confidence. Correspondingly, we 
score these possible assumptions with bonus of 
3, 2, and 1, respectively, if the corresponding 
one proves to be right. As we find in the exper-
iment, the proposed SSC scheme yields a score 
of around 2.3, which is significantly higher than 
the conventional baseline whose score is around 
1.2. Similarly, when we ask the speaker to add 
one cue for each turn, and compare the num-
ber of turns required to correctly recognize the 
given object, a fewer transmission turns are also 
observed. The improvement brought by JSNC 
approach is not that signifi cant in this experiment, 
because the absolute accuracy boost is still limit-
ed and saturates when close to 1.

oPen chAllenges wIth the ProPosed APProAch

theory on semAntIc InformAtIon
A critical cornerstone for semantic communica-
tion lies in semantic information theory. Besides 
serving as the concrete measurement of seman-
tic information bound (i.e., the semantics part in 
the information overhead) and an important met-
ric for evaluating the semantic abstraction abili-
ty, semantic information also provides a strong 
guidance for the proposed SSC scheme. Though 
researches on practical semantic communications 
have seen much growth on simple semantic con-
cepts, theorizing a universal semantic information 
theory still has a long way to go.

FIGURE 5. Learning curves of the proposed RL-based semantic communication system (SSC-ND): a) Train-
ing curves on the sentence transmission (European-parliament) task; b) Training curves on the image 
transmission (CIFAR-10) task. Runtime reward curves in AWGN and phase-invariant fading (FIF) chan-
nel are shown in orange and green lines respectively. The left y-axis measures the loss, while the right 
one measures the runtime reward.

TABLE 1. Real-life examples on the proposed similarity-targeted semantics-per-
severing communication (SSC) mechanism.

(a)

INPUT: to further understand and certify the eff ectiveness of the proposed 
semantic communication system

CE1: to further this and audits the eff ectiveness of the sometimes detention 
communication system

CE2: to further this and phase the eff ectiveness of the proposed 
prosecution communication fraude

RL1: to further understand and that the eff ectiveness of the proposed that 
communication system

RL2: to further understand and that the eff ectiveness of the proposed that 
communication system

(b)

INPUT: he claimed that he saw a strange building on the street yesterday

CE1: he claimed that he saw a strange building on the street yesterday

CE2: he claimed that he saw a strange building on the street yesterday

RL1: he claimed that he saw a strange building on the street yesterday

RL2: he says that he saw a strange building on the street yesterday

(c)

INPUT: he claimed that he saw a strange building walking on the street 
yesterday

CE1: he claimed that he saw a strange rather curious on the street yesterday

CE2: he claimed that he saw a strange building site on the street yesterday

RL1: he claimed that he saw a strange building that on the street yesterday

RL2: he reminded that he saw a strange building that on the street yesterday
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A semantics-aware communication system, in spite 
of its promising capability in revealing the under-
lying meanings, also raises some new concerns 
from the security perspective. The abstraction 
nature of semantics and target-oriented proper-
ty, for example, the same semantic token can 
bring different meanings for a group of receivers 
and for different tasks, enable a highly-encrypted, 
receiver-selective, and flexible enough solution 
for next generation communication, which can 
get further integrated with existing physical-layer 
encrypting techniques [15]. Although researches 
on the semantic security are limited in the litera-
ture, we highlight the potential a semantics-aware 
communication brings, and also point out some 
possible challenges, like the user preference, the 
implementation cost, and so on.

Challenges from the Implementation Perspective
As categorized into computation-based meth-
ods, the proposed scheme also faces certain 
implementation challenges, such as the compu-
tation-performance trade-off, demanding from 
AI-based infrastructures and task-specific gener-
alizations. However with the hardware support 
development, we believe that semantics-aware 
communications provide an important opportuni-
ty for beyond 5G and 6G applications.

Conclusion and Outlook
The core contributions of this article can be sum-
marized into three key points: First, we provide a 
holistic overview on the existing semantics-aware 
communication techniques, and analyze the 
underlying drawbacks of the current schemes. 
Second, aiming at solving the aforementioned 
problems, we devote to rethink what a seman-
tics-aware communication system ought to be, 
and detail some related concerns, like implemen-
tation cost and future designs. Third, we estab-
lish our joint semantics-noise coding (JSNC) 
solution for the semantic coding problem, and 
an RL-based similarity-targeted semantic commu-
nication mechanism for both differentiable and 
non-differentiable semantic similarity metrics (i.e., 
SSC-D & SSC-ND), to demonstrate the feasibility 
of building such a semantics-aware communica-
tion system and its promising benefits.

We notice that almost all the existing seman-
tics-aware works fall into the semantic coding part, 
but only a few concentrate on the emerging topic 
of semantic communication, and are restricted on 
the differentiable level. We hope our work can pro-
vide a new insight for future semantics-aware com-
munication systems.
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