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Trustable Policy Collaboration Scheme for Multi-Agent Stigmergic
Reinforcement Learning

Xing Xu™, Rongpeng Li
and Honggang Zhang

Abstract—1In this letter, we propose a trustable policy
collaboration scheme in the paradigm of multi-agent independent
reinforcement learning (MAIRL). This trustable policy collabora-
tion scheme is realized by directly mixing the policy parameters
of homogeneous agents, for which an upper bound of the mixture
metric is derived to guarantee the policy improvement. This
trustable policy collaboration scheme can update the behav-
ioral policies of agents distributedly and further improve the
performance of MAIRL. In addition, we develop a practical
implementation of this trustable policy collaboration scheme,
and verify its effectiveness in a mixed-autonomy traffic control
simulation scenario through the performance comparison with
other typical methods.

Index Terms— Multi-agent independent reinforcement learn-
ing, fisher information matrix, trustable policy iteration method,
stigmergy.

I. INTRODUCTION

NDEPENDENT reinforcement learning (IRL) [1] is an

effective paradigm in practical implementations to alleviate
the non-stationary learning problem in the field of multi-agent
reinforcement learning (MARL) [2]. In IRL, each agent is
commonly limited to partially observe the global environment,
and undergoes an independent learning process with only
self-related sensations. Accordingly, multi-agent collaboration
mechanisms should be introduced to reduce the behavioral
localities of IRL agents [3]. In the field of reinforcement
learning (RL), an agent with parameterized policy can improve
its performance by updating the policy parameters along the
gradient descent direction based on samples collected through
trial-and-error interaction with the corresponding environment.
Typically, the trained policy performance is closely related to
the amount and variety of obtained samples, since the more
fully explored state space leads to more accurate estimation
of the cumulative reward signal. However, due to the possible
perturbation of the heterogeneity of learning environments
or deployment means to the obtained samples, the policy
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performance of multiple IRL agents may vary significantly,
even though these agents are deployed in the same global
environment and have exactly the same facilities.

Stigmergy is a swarm collaboration mechanism that exists
widely in natural colonies, and has been used in [4] to col-
laborate IRL agents through the mutual attractors comprised
by digital pheromones. Agents are attracted via these attractors
and thus receive informative messages helpful to their learning
tasks. Here, we borrow the concept of stigmergy by regarding
each agent as an attractor whose attractiveness is proportional
to the policy performance. Agents can “approach” the member
with larger attractiveness in parameter space so as to get the
policy improvement. Furthermore, we propose a trustable pol-
icy collaboration scheme to implement this attraction process
between agents. In this scheme, any agent can learn from other
agents with better policy performance by directly mixing their
policy parameters, while a proper mixture metric is determined
to guarantee the policy improvement. By continuously mixing
policy parameters of various IRL agents, the proposed scheme
can update their behavioral policies distributedly and reduce
the discrepancy in their policy performance. Since the policy
improvement is guaranteed, the trustable policy collaboration
scheme can also improve the performance of IRL.

The mixture approach of neural network parame-
ters is familiar in parallelly distributed stochastic gradi-
ent descent (SGD) methods, which commonly obtain an
over-simplistic average model through training distributed
samples in parallel. Applying these methods directly to
improve individual policy performance seems inefficient in
IRL, since deep RL (DRL) is commonly regarded as a general
training task in these methods, and the intrinsic relationship
between parameter gradient descent and policy improvement
has not been fully considered. On the other hand, as a
policy gradient method, the conservative policy iteration algo-
rithm [S5] applies a mixture update rule directly for policy
distributions to find an approximately optimal policy, and
provides explicit lower bounds on the improvement of the
cumulative reward signal. The mixture metric for this update
rule has been investigated to prevent the catastrophic forgetting
problem, which is commonly due to the overlarge step size in
parameter updating and will largely decrease the policy per-
formance [5]. However, this policy update method is unwieldy
and restrictive in practice, as it is unusual to mix policy
distributions directly. Therefore, the trust region policy opti-
mization (TRPO) algorithm [6] has been proposed to replace
the aforementioned mixture metric with the Kullback—Leibler
(K-L) divergence measure between distributions of the current
and target policy. In this letter, we further map this K-L
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divergence measure to the parameter space through Fisher
information matrix (FIM), so as to improve the policy perfor-
mance by directly mixing its parameters and take full advan-
tage of the mixture approach of neural network parameters in
parallelly distributed training. In addition, we also introduce
the policy advantage applied in [5] into multi-agent systems,
which can indicate the discrepancy in policy performance
between agents and is helpful to reduce this discrepancy with
the trustable policy collaboration scheme. We also develop
practical implementations of the trustable policy collaboration
scheme, and verify its effectiveness through the performance
comparison with other typical methods in a mixed-autonomy
traffic control simulation scenario.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We first present an illustration of multi-agent IRL in
Fig. 1. We assume that there are totally /N agents involved
in a common global environment. Each agent is designed
to perform IRL during the decentralized training phase, and
act automatically during the decentralized execution phase.
In particular, for agent 4, i € {1,2,3,---, N}, we assume a
parameterized policy 7(")(s, a;6), where s € S is sampled
from the local state space, a € A is selected from the
individual action space, 7 : S x A — [0,1] is a stochastic
policy, and # € R?, where d represents the dimension of
policy parameters. In addition, we define pp : S — R as the
distribution of the initial state sg. In the system, we suppose
that an individual reward r, which is calculated by a reward
function R : S x A — [0, R], where R represents the maximal
reward value, will be returned to each agent immediately after
an individual action is performed. And the task objective
is to maximize the sum of all the cumulative individual
reward. Besides, we assume the relationship between agents is
essentially cooperative in a stigmergic manner. To reduce the
behavioral localities of agents and improve their cooperation
efficiency in IRL, we allow agents to exchange messages
through a device-to-device (D2D) collaboration channel with
nearby collaborators. Consider the possible communication
bandwidth or delay restriction between agents in real-world
facilities, we primarily assume that the messages transmitted
by agents are limited to policy parameters. In IRL, the task
objective of each agent can be formulated as maximizing the
cumulative reward

o0
Vﬂ(so)::E{thR(st,at)hr, so} , (D)

t=0

max 7(m):=E,

where n(7) represents the cumulative reward under the pol-
icy m, Vx(s) denotes the state value, and v € (0,1) rep-
resents the discount factor. We also define Q.(s,a) :=
R(s,a) + YEgp(siis,a) [Vr(s')] as the state-action value,
where P : S x A xS — R is the transition probability dis-
tribution, and gives the next-state (i.e., state s’) distribution
upon taking action a in state s. Therefore, we can get the
state-action advantage value under the policy 7

Ar(s,a) = Qr(s,a) — Va(s). 2)

We consider the learning process of each agent as an
infinite-horizon discounted Markov decision process (MDP).
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Fig. 1. System model of multi-agent IRL.
The visitation probability of a certain state s under the policy
7 can be summarized as

dr(s) :== Z'ytPr(st = s;7), 3)
t=0

where Pr(s; = s;m) represents the visitation probability of
the state s at time ¢ under the policy 7.

Next, for each agent, we will use the subscript label “new”
to indicate the expected policy and parameters (i.e., Tpew and
Onew), and use the symbol 7w and 6 to represent the current
policy and parameters, respectively. We will also use the sym-
bol 7 and 6 to represent the referential policy and parameters
that an agent receives from elsewhere. The referential policy
and parameters may directly be another agent’s current policy
and parameters from the D2D collaboration channel, or the
current aggregated policy and parameters by averaging over
all agents. For each agent, the mixture approach of neural
network parameters in parallelly distributed SGD methods can
often be summarized as

Onew = 0 + (6 — ), 4)

where o € [0,1] is the mixture metric. Take the afore-
mentioned average method for example, for agent 4, the
expected policy parameters are obtained by 65, = +00 +
+ Zﬁéﬂ(j), and @ = 1 — & which is influenced by the
number of agents involved. Since the neural network para-
meters represent the policy parameters in DRL, the effect of
this mixture approach in (4) on policy improvement should
be considered. In DRL, an overlarge step size in parameter
updating during policy gradient descent phase may cause
the catastrophic forgetting problem, and will largely decrease
the policy performance [6]. Besides, the policy performance
of multiple IRL agents may vary significantly due to the
differences in training samples, which means the mixture
metric in (4) between different pairs of collaborative agents
may also vary significantly. Therefore, a proper mixture metric
in (4) should be determined to inhibit an overlarge step size in
parameter updating, and help reduce the discrepancy in policy
performance between IRL agents.

III. TRUSTABLE PoLICY COLLABORATION SCHEME

In this section, we propose a trustable policy collaboration
scheme, in which the general mixture approach presented
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in (4) is used to update agents’ policy parameters, where
an upper bound that the mixture metric complies with is
determined by Theorem 1. In this letter, the proposed scheme
being trustable means that an improvement in policy perfor-
mance under this scheme is guaranteed by using two trustable
conditions in the derivation of Theorem 1.

_Theorem 1: With the referential policy parameters
0, an agent with current policy parameters 6 can
improve its cumulative reward through updating 0 to 0,
according to (4), if

A7) >0 5)

and « in (4) satisfies

2 (AT@) ¥ (6 6)7G(6)(5 - 9)}] " ®

where C' = (12_5—3)2, € = max, maxg |[Ax(s,a)|, Az(7) is the

policy advantage of 7 with respect to 7, and G(6) is the FIM
of policy parameters.

Proof: We get the expected policy through the following
mixture update rule, which is used in [S] as a more conser-
vative policy iteration method and 7 is expected to choose a
better action at every state

Tew (8, a) = (1 — B)w(s,a) + f7(s, a), 7

where 3 € [0,1] denotes the step size. Furthermore, we have
the following well-known equation about the cumulative
reward of mpew and 7

77(7TneW) - 77(77) = Z Aty (S) Z 7THeW(Sa a)AW(s, a). (8)

I<a<

A more recent proof of (8) can be found in [6]. However,
the ~y-discounted future state distribution under the expected
policy (i.e., dn,.,(s)) is hard to obtain. Instead, we can get the
following inequality by defining the policy advantage

An(7) 1= Egnty (9 [Bans An(s,0)] | ©)
1(Tnew) = 1(m) > BA(T)—CB2, (10)
where C' = 12%3)2, and ¢ = max, | >, T(s,a)Ax(s,a)l.

Detailed proofs of inequality (10) can be found in [5], except
that an unnormalized d(s) is considered here, and § < 1 is
typically the case in the conservative policy iteration algo-
rithm. According to (10), we can guarantee the cumulative
reward under the expected policy doesn’t decrease by keeping
the right-side of (10) non-negative. Furthermore, according
to [6], let £ = max, max, |A;(s,a)| and C be the same, K-L
divergence can be introduced to replace 3 with the conclusion
in (10) unchanged. Let § = /DX (7, Tpew), in order to
keep the right-side of (10) positive, we get the following two
trustable conditions to guarantee an increase of the cumulative
reward

1) Az(7) > 0;

2) 0 < DY (7, Thew) < A"T(ﬂ),
where DR (7, Moew) = maxs Dcr (7(:|8)]|Tnew(+]5)).
K-L divergence, or relative entropy, is defined by
Dk r(pllg) = Y1, p(x;) log ) for the two distributions p

q(i)
and ¢ of discrete random variable x.

On the other hand, the change in policy parameters under the
mixture approach in (4) can be represented as Af = «(6 —0).
However, the distance measure in parameter space, such as
Euclidean measure, cannot be used directly to measure the
distance between probability distributions. Therefore, a map
(or manifold [7]) should be established to revise the effect
of certain changes in policy parameters on the probability
distributions. In this letter, the distance between probability
distributions is measured by K-L divergence. Furthermore,
for any state s in DRL, we can get the K-L divergence
resulting from the change in policy parameters under the
mixture approach by

Dir(n(s,a;0)||7(s,a;0 + Af))

s,a;0
= /71'(8,0,;9) IOg mdl’ (11)

%AHT [/W(s,a;@)F(s,a;G)F(s,a;@)de AO  (12)

%

where I'(s, a; 0) = W, and the approximation proofs
of equation (12) can be found in [7]. Similarly, we define
G(O) == [n(s,a;0)T(s,a;0)(s,a;0)"dx as FIM, which
plays the role of the revise map between policy parameters
and probability distributions.
Now consider the aforementioned trustable conditions,
we can directly get
1 A (m
§A9TG(9)A9 < ﬂ. (13)
Consider the change in policy parameters under the mixture
approach in (4) (i.e., A0 = «(6 — 0)), we have the following
trustable upper bound for the mixture metric
1
1 3
Ar(m)\? ~ ~
2 (222 [@- o co)d - 9)}]

a< (14)

O

Remark 1: Note that G(6) is a positive definite matrix, and
thus the sign of A, (7) determines whether the upper bound is
positive or negative. If the policy advantage A (7) is positive,
the agent with 7 can benefit by mixing its policy parameters
with those of the agent with 7, and its mixture metric o will
also enlarge with the increase of the policy advantage value.
Besides, the deviation between the policy parameters of two
agents, which is revised by FIM, can also affect the mixture
metric. For example, the mixture metric may remain large
when the policy parameters are insensitive to change at some
“point”, even though the deviation is huge.

Remark 2: To get the upper bound of «, some practical
implementations should be developed to evaluate A, (7) and
G(0). We use Monte-Carlo simulation and the importance
sampling estimator to estimate the policy advantage utilizing
the off-policy data, specifically

Ar(T) = Zdw(s) Z%(s,a)Aﬁ(s,a)
= Zdw(s) Z (%(s,a) - W(s,a))Aﬁ(s,a) (15)

~ ES o |: %(87 a’) _
’ (s, a)

(s, a)

:| A7r* (s,a), (16)

(s, a)
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where (15) is due to > dr(s)> ,7(s,a)Ax(s,a) = 0.
7*(s,a) represents the behavioral policy sampling action a
at state s, which commonly denotes the corresponding policy
for a sample in the replay buffer. Besides, we can also estimate
FIM by Monte-Carlo simulation

G(0) = Eg and, (s),7(s,a)
T
" l(@loggg(s,a)) (810ga779(8,a)) ] (17

However, some software packages applying the K-FAC
method to approximate FIM, such as [8], can be more effec-
tive when the neural network contains a huge amount of
parameters.

Algorithm 1 Trustable Policy Collaboration Scheme

Input: 70" fori =1,2,3,...,N;

Output: Wézw fori=1,2,3,..., N,

1: Initialize nearby collaborators €2; for ¢ = 1,2, 3,..., N, number
of iterations 7', number of samples to estimate policy advantage
M, number of samples to evaluate FIM K;

2: for iteration t = 1,2,3,...,7T do

3: for agenti=1,2,3,...,N do

4: for each agent j in 2; do

5: Receive 6 by the D2D collaboration channel;

6: Random select M samples from the replay buffer of agent
i under respective policies 7* to estimate A_q) (7))
according to (16);

7: if A_i)(79) >0 then

8: Random select K samples from the replay buffer of

agent i under the current policy 7% to evaluate G(0())
according to (17);
9: Get the upper bound of «; ; in Theorem 1;
10: Make the mixture metric «y,; slightly less than the
calculated upper bound and update oW by
080, =09 + a4 (69 — @)

11: end if

12: end for

13:  end for

14: end for

15: Return wé')v fori=1,2,3,...,N;

(3
new

An illustration of this trustable policy collaboration scheme
is shown in Algorithm 1, which is performed distributedly
after agents finishing each IRL process. By determining a
proper mixture metric, Algorithm 1 considers the effect of
parameter gradient descent on policy improvement, which
is normally ignored in parallelly distributed SGD methods,
such as federated RL [9]. In Algorithm 1, the referential
policy parameters for an agent are obtained from its nearby
collaborators (i.e., 7 = 7)), and both the policy advantage
and FIM are estimated based on the accumulated samples
in its replay buffer, which may be generated under different
behavioral polices (i.e., 7*) during the policy gradient phase.
In addition, the collaboration between any pair of agents
happens only when the policy advantage is positive, and we
set the mixture metric slightly less than its calculated upper
bound to guarantee not only the policy improvement but also
the convergence speed. In the proposed scheme, each agent
is attracted by the agent with a positive policy advantage
and can improve its cumulative reward through “approaching”
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Fig. 2.

A mixed-autonomy traffic control simulation scenario.

this agent in parameter space. Since the policy improvement
is guaranteed in this stigmergic collaboration process, the
discrepancy in agents’ policy performance is reduced and the
effectiveness of IRL is further improved.

IV. NUMERICAL SIMULATION RESULTS

Next, we manifest the effectiveness of the trustable policy
collaboration scheme in orchestrating multi-agent systems.
As depicted in Fig. 2, a mixed-autonomy traffic control
scenario is selected to verify the improvement of task objec-
tive (i.e., maximizing the sum of all the cumulative reward)
brought by the proposed scheme. This simulation scenario
was released by [10] as a new benchmark for the problem of
mixed-autonomy traffic control, and also employed in [9] to
verify the combination of federated learning with IRL. In par-
ticular, there are totally 14 vehicles running circularly along a
one-way lane that resembles a shape “8” and an intersection is
located at the lane. And each vehicle must adjust its acceler-
ation to pass through this intersection in order to increase the
average speed, but slamming on the brakes will be forced on
vehicles that are about to crash. During training, each epoch
lasts 150 seconds at most. In addition, to achieve the IRL
paradigm, the scenario is slightly modified in this article by
assigning the related local state of the global environment to
each vehicle, including the position and speed of its own,
and the vehicle ahead and behind. To create the discrepancy
between the samples obtained by different agents, we ran-
domly set the duration of an agent to collect a sample between
0.1 and 10 seconds, and all agents are required to optimize
their acceleration policies through the proximal policy opti-
mization (PPO) method [11] every 25 seconds. Note that the
proposed scheme is implemented after agents finishing each
policy gradient process, and we set 7' = 1 in Algorithm 1.

In Fig. 2, these 14 vehicles are categorized into
two classes, namely, 7 cars underlying simulation of
urban mobility (SUMO) and 7 DRL-empowered cars. All
DRL-empowered cars simultaneously maintain dedicated links
to update their parameters either through the central server
maintained in the network or the D2D collaboration channel.
Besides, considering that SUMO is an open source, human
being-level, highly portable and widely used traffic simulation
package [10], we treat all 14 cars controlled by the underlying
SUMO controllers as the baseline. In Fig. 3, the normalized
average speed is an indicator of the task objective. We can ver-
ify the effectiveness of multi-agent collaboration by comparing
the performance with aforementioned average method (i.e.,
DRL-Ave) and IRL (i.e., DRL). Note that DRL-Ave can repre-
sent the naive federated RL, which utilizes an average method
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Fig. 4. Number of mixture processes applied in DRL-PA.

to obtain the aggregated parameters, as studied in [9]. Besides,
in DRL-DE, each agent mixes its parameters with every other
agent in its nearby collaborators holding a fixed mixture metric
a = 0.5, while the value of « is determined by Algorithm 1 in
DRL-PA. Here, the D2D collaboration channel is modeled by
D2D communication and nearby collaborators of each agent
include all the other agents. Considering the possible con-
flicts and interference in real communication, in DRL-PA-P,
we assume that the link between any two agents is established
with a probability Pr = 0.5, in which the mixture metric o
is determined by Algorithm 1, otherwise the agents perform
IRL. In DRL-Ave-PA, we additionally introduce a mixture
metric between each agent’s parameters and the aggregated (or
averaged) parameters over all agents, which is fixedly equal to
1.0 in DRL-Ave. Note that the mixture metric in DRL-Ave-PA
is also determined by Algorithm 1, and each agent only
communicates with the central server which maintains the
aggregated parameters. Through the performance compari-
son between the above-mentioned methods, we can observe
that methods get performance improvement by deploying the
trustable policy collaboration scheme, and a proper mixture
metric in the mixture approach is beneficial to multi-agent
collaboration, even under poor communication conditions.
We also count the number of mixture processes happened
between 7 DRL-empowered cars during the entire training
phase in DRL-PA. As indicated in Fig. 4, agent index indicates
the No. of an agent in descending order of the duration to

collect a sample. The value associated with the square in row
7 and column j represents the number of times the j;;, agent
has been referred by the iy, agent (i.e., A ¢ (W(j)) > 0 in
Algorithm 1). We can observe from Fig. 4 that two different
agents have distinct degrees of reference to each other,
and the agent with more training samples, as illustrated by
row 5 and 6 in Fig. 4, can better benefit from the mixture
process, due to a more accurate estimation of the state-action
advantage value in (16).

V. CONCLUSION AND FUTURE WORKS

In this letter, to reduce the possible discrepancy in policy
performance between IRL agents, we propose a trustable
policy collaboration scheme to update agents’ policy parame-
ters through a mixture approach, in which a proper mixture
metric is determined to guarantee the policy improvement. Our
scheme can be implemented distributedly between an agent
and another homogeneous agent or the central server with the
aggregated (e.g. averaged) parameters, and only the neural
network parameters need to be transmitted between agents
which maintains ease of implementation. We also verify the
effectiveness of the proposed scheme in a mixed-autonomy
traffic control simulation scenario, and validate its superiority.
However, the determination of an upper bound of the mixture
metric requires a large amount of computing resources, and
certain memory is also required to store the past training
samples, which remain to be optimized in the future.
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