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Stigmergic Independent Reinforcement
Learning for Multiagent Collaboration

Xing Xu , Rongpeng Li , Zhifeng Zhao , and Honggang Zhang

Abstract— With the rapid evolution of wireless mobile devices,
there emerges an increased need to design effective collaboration
mechanisms between intelligent agents to gradually approach the
final collective objective by continuously learning from the envi-
ronment based on their individual observations. In this regard,
independent reinforcement learning (IRL) is often deployed in
multiagent collaboration to alleviate the problem of a nonsta-
tionary learning environment. However, behavioral strategies of
intelligent agents in IRL can be formulated only upon their
local individual observations of the global environment, and
appropriate communication mechanisms must be introduced to
reduce their behavioral localities. In this article, we address the
problem of communication between intelligent agents in IRL
by jointly adopting mechanisms with two different scales. For
the large scale, we introduce the stigmergy mechanism as an
indirect communication bridge between independent learning
agents, and carefully design a mathematical method to indicate
the impact of digital pheromone. For the small scale, we propose a
conflict-avoidance mechanism between adjacent agents by imple-
menting an additionally embedded neural network to provide
more opportunities for participants with higher action priorities.
In addition, we present a federal training method to effectively
optimize the neural network of each agent in a decentralized
manner. Finally, we establish a simulation scenario in which a
number of mobile agents in a certain area move automatically to
form a specified target shape. Extensive simulations demonstrate
the effectiveness of our proposed method.

Index Terms— Artificial intelligence, collective intelligence,
multiagent collaboration, reinforcement learning, stigmergy.

I. INTRODUCTION

W ITH the rapid development of mobile wireless commu-
nication and Internet of things technologies, many sce-

narios have arisen in which collaboration between intelligent
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agents is required, such as in the deployment of unmanned
aerial vehicles (UAVs) [1]–[3], distributed control in the field
of industry automation [4]–[6], and mobile crowdsensing and
computing (MCSC) [7], [8]. In these scenarios, traditional
centralized control methods are usually impractical due to
limited computational resources and the demand for ultralow
latency and ultrahigh reliability. As an alternative, multiagent
collaboration technologies can be used in these scenarios to
relieve the pressure on the centralized controller.

Guiding autonomous agents to act optimally through trial-
and-error interaction with the corresponding environment is
the primary goal in the field of artificial intelligence and is
regarded as one of the most important objectives of reinforce-
ment learning (RL) [9]–[11]. Recently, deep RL (DRL), which
combines RL and deep neural networks, has improved the abil-
ity to obtain information from high-dimensional input, such as
high-resolution images, and has demonstrated extraordinary
learning ability across a wide array of tasks [12]. There are a
number of advanced DRL algorithms that can direct a single
agent to improve its behavioral policy by continuously learning
from the environment [13], [14]. However, the extension of
single-agent DRL to multiagent DRL is not straightforward,
and many challenging problems remain to be solved in the
application of multiagent RL (MARL) [15], [16]. In particular,
in a completely distributed multiagent system (MAS), each
agent is usually limited to partially observe the global environ-
ment, and its learning process following this local observation
can thus be nonstationary, as other agents’ behavioral policies
may change temporally. In addition, the assignment of an
individual reward is another challenging problem, as there is
only one global reward for feedback in most cases. As an alter-
native, independent RL (IRL) has been proposed to alleviate
the problem of a nonstationary learning environment, where
each agent undergoes an independent learning process with
only self-related sensations [17].

In IRL, most behavioral policies learned by intelligent
agents are self-centered, aiming to maximize their own inter-
ests. Thus, the target of mutual communication is to integrate
these individual behaviors effectively for the same task. Sev-
eral studies have attempted to solve the problem of mutual
communication in IRL. Foerster et al. [18] proposed differ-
entiable interagent learning (DIAL), in which an additional
communication action is added to the action set of each
agent. In addition to the selection of the current action,
a piece of interagent message is also generated and sent
to other agents through a specified communication channel.
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Thereafter, a back-propagated error from the receiver of the
communication messages is sent back to the sender to regulate
the communication action. However, this type of communica-
tion channel exists between all pairs of independent learning
agents, making DIAL very complex as the number of agents
increases. Tan [19] tested to share different types of messages
to coordinate intelligent agents on the basis of independent
Q-learning (e.g., sensations, episodes, and learned policies).
Despite its improvement in the final performance, the method
has several over-optimistic assumptions that limit its potential
application. For example, given the limited resources in a harsh
environment, it is usually impractical for a single agent to
transmit large messages in mobile wireless scenarios. As an
improvement, Mao et al. [20] proposed to utilize a coordinator
network to aggregate compressed local messages and then
share them among all agents. Because the shared messages
contain joint information from all agents, the expected result
of this design is to make each agent act optimally considering
the other agents’ behaviors. However, it is difficult to obtain
a well-trained coordinator and local networks. In summary,
appropriate communication mechanisms must be introduced
between independent learning agents to reduce their behavioral
localities [21].

As another approach, the concept of stigmergy was first
introduced by French entomologist Pierre-Paul Grassè in the
1950s when studying the behavior of social insects [22], [23].
Recently, stigmergy has experienced rapid diffusion across a
large number of application domains together with the pop-
ularization of distributed computing, collective intelligence,
and broadband Internet [24]–[27]. In particular, stigmergy
has demonstrated advantages in various scenarios requiring
distributed control where the generation of messages is closely
related to the environment, space, and time, such as the
management of traffic lights [28], [29]. A key component of
stigmergy is called the medium, which acts as the information
aggregator in multiagent collaboration. Benefiting from the
existence of a medium, effective stigmergic interaction can
be established between agents and their surrounding envi-
ronment, and distributed agents can also interact with each
other indirectly to reduce their behavioral localities. Therefore,
stigmergy is a potential technique to solve the problem of
mutual communication in IRL.

In addition to reap the large-scale merits of stigmergy,
we also propose a conflict-avoidance mechanism executed at
smaller scales between adjacent agents to further reduce their
behavioral localities. With this mechanism, we evaluate and
assign a corresponding action priority to each agent, and a
larger number of decision-making opportunities are provided
for agents with higher action priorities. In particular, the action
priority value is efficiently calculated by an additionally
embedded neural network within each agent. Furthermore,
to synchronously optimize the neural network of each agent,
we apply a federal training method along with average opti-
mization by improving the asynchronous advantage actor-critic
(A3C) algorithm [13]. We summarize all the aforementioned
techniques and propose the stigmergic IRL (SIRL) algorithm.
Based on the simulation scenario in [30], in which a number of
mobile agents move automatically to form a specified target

shape, we examine the effectiveness of the proposed SIRL
algorithm through an in-depth performance comparison with
other available methods.

Focusing on the SIRL algorithm, the contributions of this
article can be summarized as follows:

1) First, we introduce the stigmergy mechanism into
MARL and provide an effective cooperative algorithm.
We also demonstrate that the stigmergy mechanism can
decompose a global objective into small tasks that can
be more efficiently perceived by individual agents.

2) Second, we propose a conflict-avoidance mechanism to
further reduce the behavioral localities of agents, whose
foundation is an additionally embedded neural network
in each agent.

3) Third, we provide a federal training method by enhanc-
ing the A3C algorithm to synchronously optimize the
neural network of each independent learning agent
in MAS.

The remainder of this article is organized as follows.
In Section II, we discuss the related work from the perspective
of combining the stigmergy mechanism and MARL and clarify
the novelty of our work. In Section III, we present the system
framework followed by a description of the stigmergy mecha-
nism and the proposed conflict-avoidance mechanism. Finally,
we introduce the federal training method. In Section IV,
we mathematically analyze the details of the proposed SIRL
algorithm. In Section V, we describe the simulation scenario,
compare the numerical simulation results, and present key
insights into these results. Finally, in Section VI, we conclude
this article.

II. RELATED WORK

A prototype of the stigmergy mechanism can be widely
observed in natural colonies. Pagán [31] described a colony
of social insects as a super-organism with brain-like cognitive
abilities. This super-organism consists of a large number
of small insect brains coupled with appropriate cooperative
mechanisms. Despite its limited size, the small brain of each
insect is capable of performing an adaptive learning process,
which is similar to RL [11], [32]. As a classical mechanism
explaining the cooperative behavior of social insects [26],
stigmergy also includes a large number of small-scale learning
processes [33], [34] and records their effect on the surrounding
environment with the involved medium.

The application of stigmergy has been studied in the field
of MAS [24]–[29]. Stigmergy is generally used to coordinate
the behavior of multiple agents to accomplish the target
task more efficiently. In particular, the coordination process
in most applications focuses on the maintenance of digital
pheromone, which is an important part of stigmergy, while the
involved agent itself lacks the ability to learn the behavioral
policy. For example, the coordination process in the classical
ant colony optimization (ACO) algorithm [35] leads to an
increased concentration of the correct pheromone; however,
the behavioral policy of the involved agent is predetermined,
that is, choosing among several concentrations in a proba-
bilistic manner. In practice, this is effective in a bottom-to-
up designed MAS [36] in which the behavioral policy of the
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involved agent can generally be predetermined and it is easier
to predict the system’s final performance. However, in many
practical scenarios, the behavioral policies of the involved
agents cannot be predetermined, and the agents must adjust
their own policies while maintaining coordination.

In MARL, each agent can learn its behavioral policy through
interaction with the surrounding environment. However,
MARL also faces several challenges, such as the partial obser-
vation problem and credit assignment problem [15], [16]. Sev-
eral studies have attempted to combine stigmergy with MARL.
Aras et al. [37] conceptually described how certain aspects
of stigmergy can be imported into MARL, and defined an
interagent communication framework. Verbeeck and Ann [38]
investigated the impact of an ant algorithm (AA) on the
extension of RL to an MAS, and explained that stigmergy
is essential in systems in which agents do not fully cooperate.
However, the above studies all lack available algorithms. For
an agent to perform well in a partially observable environment,
it is usually necessary to require its actions to depend on the
history of observations [39]. Peshkin et al. [40] explored a stig-
mergic approach in which an external memory is created and
included as part of the input to the involved agent. In addition,
to optimize packet scheduling in routers, Bourenane et al. [41]
presented a pheromone-Q learning approach that combines the
Q-learning algorithm [42] with a synthetic pheromone that
acts as a communication medium. Specifically, the synthetic
pheromone is introduced into the Q-learning updating equation
through a belief factor. However, the effectiveness of these
methods should be verified in a more complex MAS. Ver-
beeck and Nowe [43] first proposed using learning automaton
to design and test stigmergic communication. Furthermore,
Masoumi and Meybodi [44] proposed to use the concept of
stigmergy to calculate the reward received by each learning
automaton (i.e., agent) to accelerate the learning process in
Markov games. Similarly, Xu et al. [30] proposed to use
the digital pheromone to coordinate the behavior of multiple
agents attempting to form a target shape. In particular, the dis-
tribution of digital pheromones helps provide guidance for the
movement of agents. However, none of the above-mentioned
works incorporate the advantageous capability of RL into the
involved agents’ decision-making processes. In contrast to the
above-mentioned studies, our work focuses on introducing
DRL into the decision-making process of each involved agent.

Stochastic gradient descent based distributed machine learn-
ing algorithms have been studied in the literature in terms
of both theoretical convergence analysis [45] and real-world
experiments [46]. Moreover, in addition to the traditional
distributed algorithms, Hu et al. [47] proposed to use the
federated learning algorithm to reduce the communication
cost to train one neural network. Federated learning distrib-
utes the training task (e.g., face recognition) among several
devices and obtains a common neural network through the
integration process. Similarly, Sartoretti et al. [48] proposed
a distributed RL algorithm for decentralized (DC) multiagent
collection. This algorithm allows multiple agents to learn a
homogeneous, distributed policy, where various agents work
together toward a common target without explicit interaction.
Sartoretti et al. [48] also demonstrated that the aggregation

of experience from all agents can be leveraged to quickly
obtain a collaborative behavioral policy that naturally scales
to smaller and larger swarms. However, the above-mentioned
distributed learning algorithms usually prohibit interactions
among agents to stabilize the learning process, which may
be harmful, especially in cases where agents do not fully
cooperate. Therefore, in this study, the stigmergy mechanism is
specifically incorporated into the proposed distributed learning
algorithm to achieve effective collaboration between agents
while allowing each agent to retain efficient RL ability.

III. SYSTEM FRAMEWORK

We present the framework of the SIRL mechanism in Fig. 1.
In particular, each agent is designed to learn independently
during the training phase and is required to act automatically
during the DC execution phase. Note that each agent can
only observe the environment partially and locally. Therefore,
as illustrated at the bottom of Fig. 1, we deploy stigmergy as an
indirect communication bridge between independent learning
agents, which represents an explicit feedback loop between
agents and the medium. Furthermore, as illustrated in the
center of Fig. 1, a conflict-avoidance mechanism is deployed
among adjacent agents to further reduce their behavioral
localities. At the top of Fig. 1, we introduce the federal
training method by appending a virtual agent to effectively
optimize the neural network of each agent. To more easily
clarify the framework and process of the SIRL mechanism,
we primarily consider the flight formation of UAVs to monitor
a specific target area as a typical example. We assume that
multiple UAVs (i.e., agents) are flying and collaborating to
form a specific team shape to hover above the final target area
and that each UAV must determine its flying policy indepen-
dently based on its limited local environmental information,
such as its relative position to other UAVs. In this scenario,
the proposed framework can be applied to improve the learning
effectiveness in terms of the final similarity between the
target team shape and the shape formed by the UAVs or the
aggregated cost of the UAVs.

A. Stigmergy Mechanism

In general, stigmergy consists of four main components
(i.e., medium, trace, condition, and action), which together
form a feedback loop between agents and their surrounding
environment [22], as illustrated in Fig. 1. Note that the medium
can also be regarded as part of the entire environment. Here,
the environment and medium are represented separately by
different parts in Fig. 1 to distinguish the traditional learn-
ing environment in RL from that utilized in the stigmergy
mechanism. In addition, a trace (i.e., digital pheromone) is
normally left by an agent in the medium as an indicator of
the environmental change resulting from its action. Several
traces left by different agents in the medium can diffuse and
further mix in a spontaneous manner [26]. Then, the variation
pattern of these digital pheromone traces is returned as the
interinfluence to other agents for their subsequent actions,
while the amplitude of this interinfluence is largely related
to the interdistance between agents [30].
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Fig. 1. Framework of SIRL.

In addition, stigmergy can also serve as a potential solution
to the decomposition of a global objective. For instance,
the construction of a termite nest requires the cooperation of
the entire colony, which usually passes through several gener-
ations. However, a single termite in this colony is unaware
of the global objective (i.e., building a termite nest), due
to the limited size of its brain. The cooperative mechanism
utilized by this colony must be able to decompose the global
objective into several small tasks that can be perceived by a
single termite. Therefore, in addition to realize the indirect
communication, stigmergy can also achieve decomposition of
the global objective implicitly to help obtain individual reward
in multiagent collaboration.

B. Conflict-Avoidance Mechanism

Conflicts between the actions of different agents may arise
from the competition for limited task resources during multi-
agent collaboration. To reduce the number of conflicts and
minimize the amount of data that agents need to transmit
during the collaboration process at the same time, we propose
a conflict-avoidance mechanism by calculating action priorities
for different agents. As illustrated in Fig. 2, Agent 1 (or 2) rep-
resents an independent learning agent in Fig. 1. In particular,
there are two different internal neural network modules in each
agent: the evaluation module and the behavior module. The
evaluation module is used to efficiently calculate the action
priority of an agent at the current local state, which is further
used to compete for the action opportunity. The behavior
module is used to select appropriate actions for an agent
according to the local input state when obtaining the action
opportunity. Note that the action policy from the behavior
module may be self-centered, signifying that each agent may
be trapped in its local optimality while ignoring the global

Fig. 2. Intuitive schematic of the conflict-avoidance mechanism.

objective. Thus, the conflict-avoidance mechanism enabled by
the evaluation module can help eliminate self-centered action
policies to facilitate collaboration.

With the conflict-avoidance mechanism, each agent passes
through two steps to determine the action at the current state.
As illustrated in Fig. 2, in the first step, the input related to
the current state of an agent is first sent to the evaluation
module to calculate the action priority. The action priority
value is then compared with that of nearby agents through a
coordination channel, and a priority list within a small range
can be obtained. In the second step, the same input can be
sent to the behavior module for selecting appropriate actions
only when an agent has the highest action priority in the first
step. Otherwise, the agent remains silent.

C. Federal Training Method

Despite its success in the training of deep Q-learning
networks [12], [49], experience replay may not be as effective
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in an MAS. Since a single agent in an MAS faces different
tasks or situations, samples stored in the experience pool may
not adapt to these changes. Recently, an asynchronous method
for the advantage actor-critic (A2C) algorithm has been pro-
posed and its advantages have been verified through training
human-level players for Atari games [13], [50], [51]. Here,
we further propose a federal training method by improving
the asynchronous A2C (i.e., A3C) algorithm to synchronously
optimize the neural network of each agent through the average
optimization of neural network gradients.

In this federal training method, each agent attempts to
optimize its neural network not only through self-related
experience but also through neural network gradients from
other collaborative teammates. Suppose that the number of
active agents participating in the collaboration at time step t is
Nt , and Nt ≤ N , where N denotes the total number of agents.
Moreover, Nt can also represent the number of agents that have
obtained action opportunities through the conflict-avoidance
mechanism. Gradients from these participating agents natu-
rally form a mini-batch whose functionality is similar to that
in the experience replay and maybe even more uncorrelated
because they are sampled from different situations. Therefore,
as illustrated in the right part of Fig. 1, a virtual agent is
designed and added into SIRL, aiming to collect various local
gradients of the involved agents for the average optimization.
This virtual agent has the same neural network structure as
other agents but takes no action.

IV. SIRL ALGORITHMS FOR MULTIAGENT

COLLABORATION

In this section, we provide additional details and math-
ematical formulations regarding the three above-mentioned
mechanisms. We assume that N agents are located in an
area space and are dedicated to collaboratively fulfilling a
specific task (e.g., UAVs to form a particular position shape).
As illustrated in Figs. 1 and 2, at each time step t , each
agent i receives a local state s(i)

t from the environment’s local
state space S. Depending on the local state, an action a(i)

t

is selected from the individual action set A by each of Nt

agents. After the selected action is performed, an individual
reward r (i)

t is returned to each participating agent to calculate
the neural network gradients according to the loss function,
Loss(θ (i)

t ), so as to adjust its neural network parameters
θ

(i)
t . Specifically, the local state received by each agent is

impacted by some particular environmental attractors, which
are selected according to the digital pheromone, as discussed
in Section IV-A. Furthermore, because the selected action of
each agent is influenced by its priority at the current local
state, we discuss the related calculation method of this action
priority in Section IV-B. Finally, we present the entire training
process of the two neural network modules of each agent using
the federal training method. The main notations used in this
article are listed in Table I.

A. Attractor Selection Within the Stigmergic State Space

The effectiveness of stigmergy can be improved by utilizing
the digital pheromone [2]. Unlike chemical pheromones left

TABLE I

MAIN NOTATIONS USED IN THIS ARTICLE

by ants in natural colonies, digital pheromones generated
by intelligent agents are virtual and can be represented by
several informative records in memory with attributes such
as value, time, and location [52]. Furthermore, during swarm
foraging, most ants are attracted to these chemical signals,
whose distribution naturally forms a pheromone map between
the food destination and nest. Similarly, a digital pheromone
map that contains the distribution of digital pheromones for
providing relevant information of the state space in the entire
activity area is also deployed in SIRL. The entire digital
pheromone map can be stored in a centralized manner in
the virtual agent or can be split into several parts and stored
in a DC manner in several specified agents [2]. Moreover,
the digital pheromone map is continuously updated by mutual
communication between its maintainer (e.g., virtual agent) and
other agents in the activity area.

In SIRL, the digital pheromone is regarded as the trace
left by an agent in the medium, while the digital pheromone
map is regarded as the corresponding medium. As indicated
by the dynamic features of the medium in Fig. 1, the dig-
ital pheromone experiences different evolution processes
in the medium, which should be carefully designed to
make the returned conditions more effective for each agent.
Inspired by phenomena in natural colonies, in which chem-
ical pheromones left by different ants can be superposed to
increase the total influence, we model the accumulation of
digital pheromones with different sources as a linear super-
position. Moreover, instead of being restricted to a single
area, the digital pheromone with a larger amount will diffuse
into surrounding areas. Furthermore, the amount of digital
pheromone will decay over time. Therefore, the maintainer
of the digital pheromone map should follow the three key
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principles: 1) linearly superposing digital pheromones with
different sources in the same area, 2) diffusing digital
pheromones into surrounding areas at a small scale with a
fixed diffusion rate after a new digital pheromone has been left,
and 3) decreasing the amount of digital pheromone at positions
already occupied by agents with a fixed decay rate. Note that
the decay and diffusion rate are both constants between 0
and 1.

With a digital pheromone map for the stigmergic state
space, each agent can sense the amount of digital pheromone
within a certain range. Without loss of generality, we take
the aforementioned UAV application scenario as an example.
Here, we regard any block (i.e., unit area) filled with the digital
pheromone as an attractor in the local environment, which
has an attractive effect on any nearby mobile agent for effi-
ciently observing the local state space. Similar to the classical
ACO algorithm, within the local state space, each intelligent
agent can independently perform its action (i.e., approaching
an attractor) by selecting a suitable attractor within its sensing
range from several potential attractor candidates, which can
be expressed by

Ci, j (t) = D
(
di, j (t)

) · ε j(t)∑
j∈ξi(t)

D
(
di, j(t)

) · ε j(t)
(1)

where Ci, j (t) is the probability of agent i selecting attractor j ;
ε j(t) is the total amount of digital pheromone in attractor j at
time t ; ξi (t) is the set of attractors within the sensing range of
agent i ; di, j (t) is the Euclidean distance between agent i and
attractor j ; and D(·) is a monotone function used to reduce
the effect of the digital pheromone as the interdistance di, j (t)
increases [30], which is intuitively illustrated at the bottom
of Fig. 1. This attractor selection method is inspired by the
classical ACO algorithm [35]. However, we use function D(·)
to replace the heuristic factor, which is commonly used to
consider the constraints of an optimization problem, of the
original ACO algorithm to improve the selection process.
Function D(·) can cause an agent to pay more attention to
nearby influential attractors while avoiding the so-called ping-
pong effect in the local environment. In addition, selecting
attractors in a stochastic manner can cause agents to perform
actions (i.e., approaching target positions) with a smaller
amount of digital pheromone, and can prevent a large number
of agents from crowding in a small local environment.

The location of the selected attractor serves as an informa-
tive part of the input local state for each agent. Depending
on the two neural network modules of each agent, an action
is selected according to the input local state. Furthermore,
following the stigmergic principle, any agent, which has
performed the selected action accordingly leaves an additional
digital pheromone in the medium, to provide new condition
information for the subsequent selection of attractors. This
process can be expressed by

ε j(t + 1) =
{

ε j(t) + a1, if ε j is in the labeled area

ε j(t) · b1, otherwise
(2)

where a1 represents the fixed amount of digital pheromone
left by an agent at a time, and b1 is a discount constant

between 0 and 1 that helps gradually remove useless attractors.
The labeled area indicates that the agent has partially fulfilled
a small task.

B. Action Priority Determination

In this subsection, we discuss the methods to calculate
the action priority for the conflict-avoidance mechanism. Cor-
responding to the two neural network modules in Fig. 2,
we exploit two algorithms to optimize their parameters, respec-
tively. First, for the evaluation module, we define an internal
state value network whose output is the expected accumulated
deterministic individual reward at s(i)

t

Ve

(
s(i)

t ; θ(i)
e

)
= E

[
R̃(i)

t

∣∣∣s(i)
t = s, a(i)

t = (
a; θ(i)

p

)]
a(i)

t = arg max
a∈A

π
(

s(i)
t , a; θ(i)

p

)
(3)

where s(i)
t represents the local state observed by agent i at

time t . Subscript e represents the state value network in the
evaluation module, and θ(i)

e denotes the related parameters.
Moreover, Ve is the state value of s(i)

t , which is regarded as the
action priority of agent i at the current local state. a(i)

t denotes
the selected action toward the chosen attractor of agent i at
time t . Furthermore, subscript p represents the policy network
in the behavior module, while π represents its action policy.
Note that the evaluation of the action priority at s(i)

t is based
on the deterministically executed action at the same local state,
and the returned individual reward during the training process
of the state value network in the evaluation module is also
deterministic. Therefore, we define R̃(i)

t as the accumulated
deterministic individual reward of agent i at time t , which is
calculated by

R̃(i)
t =

{
r̃ (i)

t + γ2 · Ve

(
s(i)

t+1; θ
(i)
e

)
, if s(i)

t+1 is nonterminal;
r̃ (i)

t , otherwise
(4)

where γ2 is a discount factor, and r̃ (i)
t is the returned determin-

istic individual reward. Subscript e represents the target state
value network of agent i , whose parameters and output are
represented by θ

(i)
e and Ve, respectively. The target state value

network is used to calculate the state value of the new input
local state s(i)

t+1 and further help calculate the accumulated
deterministic individual reward, as illustrated in the first line
of (4). Moreover, the target state value network is almost the
same as the state value network in the evaluation module
except that its parameters are periodically copied from the
original state value network [12]. Finally, the loss function
of the state value network in the evaluation module can be
expressed as

Loss
(
θ(i)

e

) = 0.5 ·
[

R̃(i)
t − Ve

(
s(i)

t ; θ(i)
e

)]2
. (5)

For the behavior module, we use the A2C algorithm to
optimize its parameters [50]. In particular, there is a policy and
a state value network in the behavior module that share the
same input local state from the local environment, including
the stigmergic state space with attractor indexing. Their loss
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functions, which are used to calculate the gradients of the
neural network parameters, are, respectively, expressed as

Loss
(
θ(i)

p

) = −logπ
(

a(i)
t

∣∣∣s(i)
t ; θ(i)

p

)(
R(i)

t − Vb

(
s(i)

t ; θ
(i)
b

))
(6)

Loss
(
θ

(i)
b

)
= 0.5 ·

[
R(i)

t − Vb

(
s(i)

t ; θ
(i)
b

)]2
(7)

where subscripts p and b represent the policy and state value
network in the behavior module, respectively. The local state
s(i)

t is sent to two different neural networks (i.e., the pol-
icy network and the state value network) to calculate the
corresponding output. For the policy network, the output is
the action policy π . We select each action in a probabilistic
manner during the training phase of the policy network; thus,
the returned individual reward is stochastic. For the state value
network, the output is the state value of s(i)

t (i.e., Vb), which
is used to calculate the advantage (i.e., R(i)

t − Vb(s
(i)
t ; θ

(i)
b ))

to speed up the convergence of the action policy in the
parallel policy network. Accordingly, R(i)

t is the accumulated
individual reward of agent i , which can be expressed as

R(i)
t =

{
r (i)

t + γ1 · Vb

(
s(i)

t+1; θ
(i)
b

)
, if s(i)

t+1 is nonterminal;
r (i)

t , otherwise

(8)

where r (i)
t is the individual reward received by agent i at

time t , and γ1 is a discount factor that can normally be set to
a constant between 0 and 1 (e.g., 0.9). Similarly, subscript
b represents another target state value network of agent i .
Note that under the conflict-avoidance mechanism, any agent
with the highest action priority will have the opportunity to
perform the selected action. Because the execution order of
different actions is arranged by their accumulated deterministic
individual rewards, this estimation method of action priority
is expected to obtain a large global reward.

C. Training Neural Network Modules

Under the conflict-avoidance mechanism, the evaluation and
behavior modules work together to obtain an individual reward
and forge a cooperative relationship. Furthermore, according
to (3), the estimation of the action priority is also based on the
deterministic action policy of the behavior module. Therefore,
there are two successive sessions in each training round
(i.e., training epoch). In the left part of Fig. 3, we freeze the
parameters of the behavior module in the training session of
the evaluation module. Similarly, we freeze the parameters of
the evaluation module in the training session of the behavior
module, which is indicated in the right part of Fig. 3. The
federal training method is applied in both sessions, where
a virtual agent is also employed. Furthermore, we set a
terminal condition for both training sessions. Each session
is stopped as the number of internal time steps reaches its
maximum, or the global reward is positive. The performance of
multiagent collaboration is represented by the global reward,
whose improvement can implicitly indicate the convergence of
the current training of the neural network modules. In Fig. 3,
t denotes the index of time steps while tmax represents its

Fig. 3. Two successive sessions in each training round.

maximum. t is set to 0 at the beginning of a training session.
During each training round, a sample is sent to both sessions
to optimize different neural network modules.

In MARL, the global reward can typically be used to indi-
cate the performance of multiagent collaboration. However,
it usually cannot be directly used as the individual reward
received by an agent, as the global reward is determined
by a series of actions from different agents. In general,
the individual reward can be obtained through a reasonable
decomposition of the global objective. In SIRL, after the
selected action is performed, each agent receives an individual
reward from the medium. Because the objective of each
agent is to approach its selected attractor in the stigmergic
state space, we define the returned individual reward as the
Euclidean measure (i.e., interdistance change) between the
position of each agent and its selected attractor, which can
be expressed as

r (i)
m (t) = ρ1 · max

([
di, j(t − 1) − di, j(t)

]
, 0

)
(9)

where the subscript m represents the medium in SIRL, and
r (i)

m (t) represents the individual reward received by agent i
from the medium at time t . In addition, ρ1 is a scalar factor,
while di, j (t) represents the interdistance between agent i and
its selected attractor j , where j ∈ ξi (t − 1). Note that
the reward r (i)

m (t) is obtained due to the implementation of
the digital pheromone, which indicates the decomposition
process of the stigmergy mechanism for the global objective.
In particular, during each training round, r (i)

m (t) is set to r̃ (i)
t

in (4) during the training session of the evaluation module, and
r (i)

t in (8) during the training session of the behavior module.
Furthermore, as illustrated in Figs. 1 and 3, the federal

training method is used to optimize the parameters of different
neural network modules through the average optimization

θ
(v)
t+1 = θ

(v)
t + v

(v)
t (10)

v
(v)
t = ρ · v(v)

t−1 − lt · 1

Nt

Nt∑
i=1

∂Loss
(
θ

(i)
t

)
∂θ

(i)
t

(11)

where the superscript v represents the virtual agent. At time
step t = 0, v

(v)
0 is set to 0. ρ is a momentum factor, while

lt denotes the learning rate of parameters. The federal training
method is inspired by the A3C algorithm; however, it applies
a synchronous updating method, which has been demonstrated
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Fig. 4. Moving mode and digital pheromone sensing range of a single mobile
agent in the activity area.

to have a lower error bound [53]. Moreover, we add a
momentum factor in the updating process to accelerate the
convergence. Because a virtual agent has the same neural
network structure as other agents, it can be used to optimize
the parameters of different neural network modules. For sim-
plicity, we use θ

(i)
t in (11) to represent the parameters of either

the evaluation or behavior module for agent i , and use θ
(v)
t to

represent the parameters of the same neural network module
of the virtual agent. In particular, for the current training of
the neural network module, gradients of the involved neural
network parameters are first calculated in these Nt agents
according to the corresponding loss function, Loss(θ (i)

t ), and
are then sent to the virtual agent for the average optimization.
Finally, the newly calculated parameters θ

(v)
t+1 are sent back to

all agents to update their neural network modules. The entire
SIRL algorithm can be divided into a training and testing part,
which are detailed in Algorithms 1 and 2, respectively.

V. EXPERIMENTAL SIMULATION SETTINGS

AND NUMERICAL RESULTS

In this section, we create a simulation scenario in which a
certain number of mobile agents (e.g., UAVs) in an activity
area automatically form a specified team shape. In this simu-
lation scenario, the target team shape is transferred through
the binary normalization of an image that is taken from
the standard Modified National Institute of Standards and
Technology (MNIST) data set [54]. The MNIST data set is
a large set of handwritten digits that is commonly used for
training various image processing systems. In addition, it is
widely used for training and testing in the field of machine
learning. Specifically, each image in this data set has a standard
size (i.e., 28 × 28). As illustrated in Fig. 4, an agent is
represented by a nonzero block (i.e., a pixel, as in a digitized
binary image). The white block (i.e., unit area) represents an
agent, while the black blocks represent the potential positions
the mobile agent can visit. We set the distance between
any two adjacent blocks to 1. In the beginning, all mobile
agents are distributed randomly across the entire activity area
(i.e., the entire image). The experimental objective in this
scenario can be mapped to many real-world multiagent collab-
oration tasks, such as the flight formation of UAVs monitoring
a certain target area.

First, the simulation settings for the involved agents and the
activity area are described as follows:

1) Each agent is supposed to move a block at each time step
toward one of four directions: 1) up, 2) down, 3) left,
and 4) right.

2) Each agent can leave the digital pheromone in the cur-
rent position and sense the amount of digital pheromones
in the surrounding blocks within a certain range.

3) Each agent can identify whether the occupied position
is labeled or unlabeled.

4) Each agent can sense the existence of neighbors in the
up, down, left, and right directions to avoid a collision.

5) Each block in the activity area can only be occupied by
one agent at a time.

6) The activity area can be classified as labeled and unla-
beled, where the former corresponds to the target team
shape to be formed.

The moving mode of a single agent is illustrated in Fig. 4(a).
In Fig. 4(b), the white dotted line represents the bound-
ary of the digital pheromone sensing range of that agent.
Brown blocks indicate the presence of digital pheromones,
and colors with different shades represent distinct amounts
of the pheromone. In addition, the coordination channel for
the conflict-avoidance exists between any central agent and its
eight possible neighbors, which are also called Moore neigh-
bors in mobile cellular automation [55]. In the experimental
simulation, we use a Gaussian function to play the role of D(·)
in (1), which can be expressed as

D
(
di, j(t)

) = a2 · exp

(
−

(
di, j (t) − b2

)2

2c2
1

)
(12)

where a2 represents the peak value and is set to 1; b2 is the
mean value and is set to 0; and c1 represents the standard
deviation and is normally set to 0.25.

The similarity, SI , is calculated by the ratio of the number
of agents that end up in the labeled area to the total number of
agents in the activity area, which is further determined by the
number of nonzero pixels required to form the target shape.
In the training part, we define the increase in similarity after
each time step (i.e., 	SI ) as the global reward, which can be
positive or negative. In addition, similar to the settings in [30],
we use the position distribution of all agents after a certain
number of iterations as the swarm’s initial state, which can
also be regarded as a sample. Approximately 7500 samples
are extracted from different iterations in this simulation during
the formation of the target shape “4.” In particular, the new
position distribution of all agents is returned after each time
step to calculate both the global and individual rewards so as
to further optimize the neural network modules. Note that the
neural network modules trained by this sample set can also be
used in the testing process to form another shape (e.g., “1,”
“2,” “0,” “6,” and “8”).

Furthermore, the evaluation and behavior modules share the
same input local state, which is denoted by a vector with seven
elements. The first four elements represented by bit numbers
are used to confirm whether there are neighbors in the follow-
ing four adjacent positions: up, right, down, and left. The fifth
and sixth elements are used to describe the relative position
of the selected attractor in a two-dimensional plane, and the
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Algorithm 1 Training Part of SIRL
Input: Agents with the neural network modules, the sample set, the target shape, number of training rounds;
Output: Agents with the well-trained neural network modules;
1: Initialize the whole activity area, the digital pheromone map, the labeled area, the neural network modules within each agent, diffusion rate, decay rate,

tmax, time step t , the range of sensing digital pheromone, the range of coordination channel;
2: for each training round do
3: //* Training session of Evaluation Module *//
4: Select a sample randomly from the sample set and initialize the location of agents according to the selected sample;
5: while t ≤ tmax do
6: for each agent do
7: Select an attractor according to (1) and form the input local state;
8: Send the local state to Evaluation Module;
9: Send the same local state to Behavior Module and select an action with the largest probability;

10: Perform the action;
11: Modify the digital pheromone at current position according to (2);
12: if the extra digital pheromone is left then
13: Diffuse the digital pheromone to the surrounding areas with the fixed diffusion rate;
14: Superpose the amount of digital pheromone at the same position linearly;
15: end if
16: Calculate the individual reward according to (9);
17: Select a new attractor according to (1) and form the new input local state;
18: end for
19: Decay the amount of digital pheromone at positions already occupied by agents with the fixed decay rate;
20: if the calculated global reward > 0 then
21: Break;
22: else
23: for each agent do

24: Calculate the gradients ∂Loss(θ(i)
e )

∂θ
(i)
e

of the state value network within Evaluation Module according to (4) - (5) with the new input local state;

25: Send the calculated gradients to the virtual agent;
26: end for
27: The virtual agent receives the gradients from agents and optimizes the internal state value network within Evaluation Module according to (10) -

(11);
28: The virtual agent sends back the calculated parameters θ

(v)
t+1 to all agents;

29: Each agent updates the state value network within Evaluation Module with θ
(v)
t+1;

30: end if
31: end while
32: //* Training session of Behavior Module *//
33: Initialize the location of agents according to the selected sample;
34: while t ≤ tmax do
35: for each agent do
36: Select an attractor according to (1) and form the input local state;
37: Send the local state to Evaluation Module and calculate the action priority;
38: Send out the action priority through the coordination channel and receive the returned priority list;
39: if the own action priority is the largest then
40: Send the same local state to Behavior Module and select an action in a probabilistic manner;
41: Perform the action;
42: Modify the digital pheromone at current position according to (2);
43: if the extra digital pheromone is left then
44: Diffuse the digital pheromone to the surrounding areas with the fixed diffusion rate;
45: Superpose the amount of digital pheromone at the same position linearly;
46: end if
47: Calculate the individual reward according to (9);
48: Select a new attractor according to (1) and form the new input local state;
49: end if
50: end for
51: Decay the amount of digital pheromone at positions already occupied by agents with the fixed decay rate;
52: if the calculated global reward > 0 then
53: Break;
54: else
55: for each agent getting the action opportunity do

56: Calculate the gradients
∂Loss(θ(i)

p )

∂θ
(i)
p

and
∂Loss(θ(i)

b )

∂θ
(i)
b

of the policy and state value networks within Behavior Module according to (6) - (8) with the

new input local state;
57: Send the calculated gradients to the virtual agent;
58: end for
59: The virtual agent receives the gradients from agents and optimizes the internal policy and state value networks within Behavior Module according

to (10) - (11);
60: The virtual agent sends back the calculated parameters θ

(v)
t+1 to all agents;

61: Each agent updates the policy and state value networks within Behavior Module with θ
(v)
t+1;

62: end if
63: end while
64: end for
65: Return agents with the well-trained neural network modules;

Authorized licensed use limited to: Zhejiang University. Downloaded on September 05,2022 at 04:04:54 UTC from IEEE Xplore.  Restrictions apply. 



4294 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

Algorithm 2 Testing Part of SIRL
Input: Agents with the well-trained neural network modules, the location of each agent, the target shape, number of iterations;
Output: The final similarity;
1: Initialize the whole activity area, the digital pheromone map, the labeled area, diffusion rate, decay rate, time step t ,

the range of sensing digital pheromone, the range of coordination channel;
2: for each iteration do
3: for each agent do
4: Select an attractor according to (1) and form the input local state;
5: Send the local state to Evaluation Module and calculate the action priority;
6: Send out the action priority through the coordination channel and receive the returned priority list;
7: if the own action priority is the largest then
8: Send the same local state to Behavior Module and select an action with the largest probability;
9: Perform the action;

10: Modify the digital pheromone at current position according to (2);
11: if the extra digital pheromone is left then
12: Diffuse the digital pheromone to the surrounding areas with the fixed diffusion rate;
13: Superpose the amount of digital pheromone at the same position linearly;
14: end if
15: end if
16: end for
17: Decay the amount of digital pheromone at positions already occupied by agents with the fixed decay rate;
18: end for
19: Calculate the final similarity according to the target shape;
20: Return the final similarity;

seventh element is used to confirm whether the current
occupied position is labeled or unlabeled. The individual
action set A contains five different actions: up, right, down,
left, and stop. However, since the local state received by
each agent contains the relative positions of adjacent agents,
the recorded new input local state s(i)

t+1 may be inaccu-
rate at time step t + 1 due to the possible movement
of adjacent agents at time step t , thus leading to inac-
curate estimation of Ve(s

(i)
t+1; θ(i)

e ) in (4). In the follow-
ing simulation, we use different values of γ2 to test this
phenomenon.

We first present the convergence of SIRL and compare it
with that of other typical methods. The first method, joint
learning (JL), attempts to learn the optimal behavior from
the joint information using only the behavior module, whose
input is a cascaded vector containing all the input local states
of surrounding agents within the Moore neighborhood, while
the conflict-avoidance mechanism is disabled. The second
method, IRL, has almost the same settings as JL except
that its input vector only contains the self-related local state.
The third method, joint learning-origin (JL-O), and the fourth
method, IRL-origin (IRL-O), are modified from the JL and
IRL methods, respectively, by further disabling the stigmergy
mechanism and replacing the attractors by the exact coordi-
nates of the agents. In this situation, each agent receives a
nonzero individual reward only when it enters the labeled
area, and the global reward is also considered afterward.
The received individual reward in this situation is indicated
in Table II. Here, the transition 0 → 1 represents an agent
moving from the unlabeled area to the labeled area. a3 and b3

are both positive constants.

TABLE II

RECEIVED INDIVIDUAL REWARD FOR JL-O AND IRL-O

The training and testing performance of the above-
mentioned five methods is presented in Fig. 5, and an intuitive
illustration of the formed shapes with respect to the iteration
index in SIRL is presented in Fig. 6. In Fig. 5(a), the neural
network modules are tested every 10 training rounds. It can
be observed from Fig. 5 that there is an evident performance
difference between methods with and without the stigmergy
mechanism, as indicated by the curves of SIRL, JL, and IRL,
since stigmergy can better decompose the global objective
and achieve a higher final similarity. In addition, although
the joint information is obtained in JL, it is simply treated as
a noisy signal by each agent without appropriate utilization.
Therefore, despite different inputs, the performance of JL and
IRL is almost identical. Moreover, SIRL performs better than
JL or IRL, benefiting from the conflict-avoidance mechanism,
which can reconcile the contradictions caused by the actions of
different agents and further improve the cooperation efficiency.

We also present the training performance of SIRL in Fig. 7
when the discount factor γ2 takes different values. We can
observe that the training performance of SIRL declines as the
value of γ2 increases to 1. In SIRL, based on the current local
observations of the environment and the behavioral policy,
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Fig. 5. Training and testing performance of different methods in the task to form the shape “4”.

Fig. 6. Shapes formed at different iterations using SIRL.

the evaluation module of each agent is used to calculate the
action priority among the action candidates. However, due
to the existence and influence of other agents, the transition
process from one state to another becomes unpredictable for
each individual agent. In this situation, the reward mapped
from the future state by the discount factor γ2 becomes inac-
curate. A smaller γ2 can generally reduce this estimation error.
Therefore, in the following simulation, we set the discount
factor γ2 = 0 in the training session of the evaluation module
of each agent to limit the accumulation of R̃(i)

t to only one
step.

We further test the well-trained neural network modules
using the above-mentioned five methods in the tasks to form
shapes “1” and “2.” The final similarity and the number of
involved agents in each task are listed in Table III, where
each value is an average of five replications. Note that the task
complexity is largely related to the number of agents involved.
With an increase in task complexity, the number of iterations
required to reach convergence also increases, whereas the final
similarity normally declines. In the first five rows of Table III,
we can observe that the neural network modules fully trained
in the task to form shape “4” can also be used to form other
shapes (i.e., “1” and “2”), and the methods with stigmergy
yield superior portability to those without it.

Next, we compare the performance with the centralized
selection (CS) method presented in [30], in which a certain
number of agents are selected synchronously at each iteration
through a threshold-based function [26] to perform actions,
while the other agents stop. Furthermore, we convert the CS
method into a DC method called DC, in which each agent
can automatically decide to perform an action or not through

Fig. 7. Training performance of SIRL when γ2 takes different values.

Fig. 8. Performance comparison between CS, DC, and SIRL in three different
tasks.

comparison with surrounding neighbors. Thus, the number of
active agents may vary within each task or iteration. Instead of
competing based on the action priority, as in SIRL, agents in
DC can directly determine their moving priorities in terms of
the received rewards. In particular, an agent can move in the
next time step t+1 only when it receives the maximum reward
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TABLE III

FINAL SIMILARITIES USING DIFFERENT METHODS

Fig. 9. Performance comparison using different methods in the tasks to form shapes “0,” “6,” and “8”.

TABLE IV

MANUALLY SET RECEIVED REWARD FOR THE DC METHOD

in time step t within the comparison range, which has the same
size as the Moore neighborhood. As illustrated in Table IV,
the reward received by each agent in DC is carefully tuned and
closely related to its surrounding conditions. Here, each agent
should consider the existence of up to four nearest neighbors in
the up, down, left, and right directions. The label “1” (or “0”)
in the second line signifies that this agent is in the labeled (or
unlabeled) area, whereas “*” indicates to ignore this condition.
We observe that agents in the unlabeled area appear to receive
greater rewards and thus obtain more action opportunities.
In addition, similar to CS, each agent in DC is also designed to
approach its selected attractor in a circular path so as to make
most agents in the unlabeled area move around the labeled
area to accelerate the convergence [30].

In Fig. 8, we present a performance comparison between
CS, DC, and SIRL in the task of forming three different
shapes (i.e., “1,” “4,” and “2”). Their final similarities are
listed in the first, sixth, and seventh rows of Table III. We can
observe that the performance of CS and DC tends to decline
sharply with an increase in task complexity and the number
of involved agents. Moreover, in CS and DC, the value of
received individual rewards and the moving manner of each

agent must be determined manually, which is impractical in
more complex scenarios. In contrast, the performance of SIRL
reaches a level comparable to that of CS or DC, and achieves
a superior convergence rate in more complex tasks, such as
the task to form the shape “2.”

Next, we increase the task complexity and add a ring
structure into the shape to be formed so as to give it a more
complex topology. The performance comparison between CS,
DC, and SIRL in the tasks to form shapes “0,” “6,” and “8” is
provided in Fig. 9. The numerical results are also listed in the
first, sixth, and seventh rows of Table III. The neural network
modules utilized in SIRL are still fully trained in the previous
task to form shape “4.” In Fig. 9, there is a large performance
difference between CS or DC and SIRL. The reason is that it
is generally easier for agents in the unlabeled area to win the
moving opportunities; however, they move around the labeled
area repeatedly in CS or DC. Consistent with our previous
discussion, both the CS and DC methods perform better in
less complex scenarios, such as the task to form the shape “1.”
However, they reach a bottleneck for complex shapes that
contain ring structures because agents in the unlabeled area
are blocked by other agents located at the edge of the labeled
area.

We present the final shapes formed by the three methods
in Fig. 10. It can be clearly observed that many agents
in CS or DC are detained on the periphery of the labeled
area, ultimately reducing the final similarity. In contrast,
the performance of SIRL remains stable regardless of the task
complexity, which benefits from the learning process of the
federal training method. Compared with DC, the number of
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Fig. 10. Final shapes formed by CS, DC, and SIRL.

agents that are selected at each iteration must be predetermined
in CS. However, the most appropriate number may depend on
the specific task or iteration. Thus, CS would obtain lower
final similarities or require a larger number of total steps
in different tasks. In addition, the performance of CS also
declines dramatically when the shape to be formed contains a
ring structure. This phenomenon can also be observed in DC,
as the two methods share the same manner of motion.

We further test the effect of different ranges of the coordi-
nation channel of the conflict-avoidance mechanism on the
final performance based on SIRL. Instead of relying on
the Moore neighbors, in the SIRL-A method, we reduce
the maximum range of the coordination channel to 1; thus,
only four neighbors are added in the comparison of action
priority. Furthermore, in the SIRL-WS method, we disable
the conflict-avoidance mechanism (i.e., well-trained evaluation
module) and provide each agent with the action opportunity at
each time step, which can be regarded as the maximum range
of the coordination channel being set to 0. The performance of
the two methods is illustrated in Fig. 9. The numerical results
are also listed in the last two rows of Table III. It can be seen
that the performance of SIRL-A reaches a similar level to that
of SIRL, and achieves an even higher convergence rate since
more agents can obtain action opportunities and participate in
the task at an early stage. In addition, the curves of SIRL-WS
in various tasks grow faster but stop at similarly lower levels.
It can be concluded that the conflict-avoidance mechanism
plays an important role in multiagent collaboration and can
reduce the behavioral localities of agents and achieve a higher
final similarity.

As an important metric, the number of total steps required
by all involved agents to form the target shape should espe-
cially be considered. In Fig. 11, we present the total number of
steps when the performance reaches convergence using four
different methods. In the Oracle method, it is assumed that

Fig. 11. Number of steps required using different methods.

the location of each agent and the target shape is known
in advance. Therefore, for each vacancy in the labeled area,
the nearest agent is moved in sequence to fill it greedily. This
scheme represents a simple but effective control method in the
extraordinary case in which all information is known, even
though the greedy algorithm does not necessarily produce the
optimal result. In Fig. 11, the formed shapes are arranged
from small to large based on the number of involved agents.
There is a trend that as the number of involved agents
increases, the number of total steps required also increases.
We can observe that the performance of SIRL reaches a level
comparable to that of Oracle. Moreover, since the agents are
controlled in parallel, SIRL may spend less time completing
tasks in real scenarios.

VI. CONCLUSION

This study utilizes the advantages of the stigmergy mecha-
nism rooted in a natural MAS and contributes to integrating
stigmergic collaboration into the DRL-based decision-making
process of each involved intelligent agent. In particular, in our
proposed SIRL algorithm, various agents are coordinated
through the stigmergic functionality and conflict-avoidance
mechanism in fulfilling the corresponding tasks. As an
enhancement to stigmergy, the proposed conflict-avoidance
mechanism can further improve the coordination performance,
especially when agents do not fully cooperate. In addition,
the RL process of each agent is strengthened through the
proposed federal training method. Compared with a traditional
distributed learning algorithm, our learning method allows
agents to optimize their internal neural networks while main-
taining their external interaction processes required for effec-
tive interagent collaboration. Furthermore, due to the introduc-
tion of the stigmergic RL process, our proposed SIRL scheme
can be further applied to more complex cooperative tasks for
which the agent’s behavioral policy cannot be predetermined.
The results of numerical simulations verify the effectiveness
of our proposed scheme with significant improvements in both
efficiency and scalability.

In future work, we plan to implement the proposed SIRL
scheme in real-world application scenarios. As a preliminary
step, our scheme has recently been implemented on multiple
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mobile robots in team formation tasks, which are similar to
those presented in this article [56], and achieve satisfactory
results. We also plan to investigate the performance of the
SIRL scheme in other coordination scenarios, such as the con-
trol of autonomous vehicles in intelligent urban transportation.
In addition, determining how to improve the network training
efficiency while considering the communication delay and cost
among various agents is also a valuable direction that we will
consider in future research.
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