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Abstract— Channel estimation in vehicle-to-everything (V2X)
communications is a challenging issue due to the fast time-varying
and non-stationary characteristics of wireless channel. To grasp
the complicated variations of channel with limited number of
pilots in the IEEE 802.11p systems, data pilot-aided (DPA)
channel estimation has been widely studied. However, the error
propagation in the DPA procedure, caused by the noise and
the channel variation within adjacent symbols, limits the perfor-
mance seriously. In this letter, we propose a deep learning based
channel estimation scheme, which exploits a long short-term
memory network followed by a multilayer perceptron network
to solve the error propagation issue. Simulation results show that
the proposed scheme outperforms currently widely-used DPA
schemes for the IEEE 802.11p-based V2X communications.

Index Terms— Channel estimation, data pilot-aided, IEEE
802.11p, deep learning.

I. INTRODUCTION

IN recent years, vehicle-to-everything (V2X) communica-
tion, as a core technology of intelligent transportation sys-

tem, has attracted significant research attention for its potential
of timely providing traffic information and supporting appli-
cation services among vehicles [1], [2]. The IEEE 802.11p
standard, also known as dedicated short range communication
standard (DSRC) which is one of the competitive technologies
for realizing V2X communication, has been widely studied.
However, due to the highly mobile and relatively complex
communication environments, channel estimation is a chal-
lenging issue with the pre-defined pilot pattern in the IEEE
802.11p standard. Conventional channel estimation schemes
fail to yield satisfied results with such limited pilots in practical
environments [3]. On the other hand, to guarantee spectral
efficiency, it is unacceptable to insert more pilots in a packet.

To tackle the problem incurred by insufficient number of
pilots, many researchers resort to the data pilot-aided (DPA)
method of which the basic idea is utilizing the demapped
data symbols as data pilots for channel estimation. However,
applying such channel estimates to the equalization of a new
symbol directly leads to the error propagation issue, which is
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mainly originated from the channel noise and channel variation
within two adjacent symbols, thus influencing the transmission
reliability significantly. The spectral temporal averaging (STA)
scheme proposed in [4] improves the performance by averag-
ing estimated channels in both time and frequency domains.
The constructed data pilot (CDP) scheme [5] utilizes the
correlation characteristics of channels within two adjacent
symbols to judge the reliability of channel estimates and then
decide whether or not to update the channels. By utilizing the
demapped symbols to construct the data pilots, both the STA
and CDP schemes have low computational complexity but are
highly influenced by the reliability of data pilots. In contrast,
DPA schemes based on decoded symbols as discussed in [6]
relieve this issue but at the cost of the additional decoding
delay and increased computational complexity.

Recently, deep learning techniques, which can extract the
inherent characteristics from a large amount of data, have
been applied to facilitate V2X communications. Utilizing a
dense block pilot placement rather than DPA, the ChanEstNet
network, consisting of a convolutional neural network and
a bidirectional long short-term memory (LSTM) network,
is designed to estimate channel in a high-speed environ-
ment [7]. The autoencoder (AE) based DPA scheme proposed
in [8] uses an AE network to learn channel characteristics
in the frequency domain for channel reconstruction and noise
cancellation, and exhibits an obvious gain over the STA and
CDP schemes. Gizzini et al. propose to combine STA and
deep neural network (DNN) (named STA-DNN) to improve
the channel estimates output by the STA scheme [9], which
also reduces the computational complexity as compared with
the AE scheme. Yet, the effect of channel variation is neglected
by the AE scheme and can be impacted by the accuracy of
the STA output for the STA-DNN scheme.

In this letter, we propose a deep learning based DPA
channel estimation scheme for the IEEE 802.11p system. It
combines the DPA procedure and neural network composed
of two parts, namely an LSTM network and a multilayer
perceptron (MLP) network, for learning the channel time and
frequency correlation, respectively. By the DPA procedure,
we update the channel estimates in each symbol, which solves
the problem of insufficient number of pilots and provides
more useful channel information for the neural network. On
the other hand, by the neural network, which tracks channel
variation and mitigates noise, we compensate the error of
the DPA procedure efficiently. Simulation results show that
the proposed scheme exhibits better performance than the
previous DPA schemes especially for transmitting large-length
packets with high-order modulation schemes and/or in fast
time-varying channels.

II. SYSTEM MODEL

In this section, we briefly introduce the physical layer of
the IEEE 802.11p standard and analyze the DPA procedure.
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Fig. 1. IEEE 802.11p packet structure.

A. Pilot Pattern of IEEE 802.11p
The IEEE 802.11p physical layer is based on orthogonal

frequency division multiplexing (OFDM) technology with
64-point fast fourier transformation in 5.9GHz carrier fre-
quency with 8µs OFDM symbol duration. As shown in Fig. 1,
each data packet consists of the preamble including short
and long training symbols, SIGNAL field, and DATA field.
The SIGNAL field conveys packet information (e.g., modu-
lation scheme, coding rate, and data length) and the DATA
field carries payload with data symbols. For each OFDM
symbol, there are 64 subcarriers with an index set SN =
{−32,−31, . . . , 31}, including 4 pilot subcarriers, 12 empty
subcarriers, and 48 data subcarriers with index sets SP =
{−21,−7, 7, 21}, SE = {−32,. . .,−27, 0, 27,. . ., 31}, and
SD = SN ∩ (SP ∪ SE)C, respectively, where (·)C means the
complementary set.

For simplicity of representation, we ignore the SIGNAL
field and let l represent the index of the OFDM symbols in
the DATA field. The pilot pattern is shown in Fig. 1, including
two parts, namely two long training symbols T1 and T2 in the
preamble and pilots in the four pilot subcarriers. Assuming that
channel is quasi-stationary, i.e., the channel does not change
in one OFDM symbol duration but can vary from symbol to
symbol, the received signal at the k-th subcarrier Yl (k) in the
l-th OFDM symbol can be expressed as

Yl(k) = Hl(k)Xl(k) + Wl(k) (1)

where Hl (k), Xl (k), and Wl (k) are the channel frequency
response (CFR), transmitted signal, and complex Gaussian
noise with zero mean and variance σ2, respectively.

B. Analysis of the DPA Procedure
Without modification of the structure of IEEE 802.11p,

the DPA channel estimation scheme tries to solve the problem
of limited pilots, via amending the error of equalized data
symbols from the demapping procedure to a certain extent and
regarding the amended data symbols as pilots in each symbol
for channel estimation. The DPA based scheme is flexible for
the arbitrary packet length but its performance is impacted by
the error propagation issue which is analyzed as follows.

Assuming that X̂l (k) is the amended data symbol (i.e.,
data pilot) in the l-th OFDM symbol at the k-th subcarrier,
the channel estimation calculated using the data pilot by the
least square (LS) algorithm can be represented as

Ĥl (k) = Yl (k)
/

X̂l (k), ∀k ∈ SD. (2)

If we apply the estimated CFR Ĥl(k) to obtain the trans-
mitted data symbol in the next OFDM symbol directly by
zero-forcing equalization as

X̂l+1 (k) = Q
(
Yl+1 (k)

/
Ĥl (k)

)
, ∀k ∈ SD (3)

where Q (·) denotes the operation mapping the equalized
symbol to the closest constellation point, the error between the
true CFR Hl+1(k) and the estimated CFR Ĥl(k) will influence
the reliability of data pilot X̂l+1 (k). The error consists of two
parts, the channel estimation error between Ĥl(k) and Hl(k)
in the LS algorithm due to the additive noise in Yl (k), and
the error by channel variation between Hl(k) and Hl+1(k)
influenced by the Doppler shift. Therefore, it is imperative to
find an error compensation method for the DPA procedure,
so as to improve the accuracy of channel estimation and solve
the channel variation problem.

III. PROPOSED SCHEME

In this section, we introduce the proposed channel estima-
tion scheme to compensate the error efficiently.

A. Neural Network Design

To address the error propagation issue, we design a novel
neural network for tracking channel and mitigating noise.
It is composed of an LSTM network and an MLP network,
of which the structure and function are detailed as follows.

1) LSTM Network: Firstly, we employ the LSTM net-
work, which is one of recurrent neural networks (RNNs)
well known for time series prediction [10], to track chan-
nel. Assume each packet has L OFDM symbols indexed by
l ∈ {1, 2, . . . , L}. As shown in Fig. 2, one LSTM unit is
in charge of dealing with channel estimation for demodu-
lating one OFDM symbol. So, the number of LSTM units
equals the number of the OFDM symbols in the packet.
For the l-th OFDM symbol, we let the estimated CFRs in
the last OFDM symbol and the current CFRs in the pilot
subcarriers as the input of the corresponding LSTM unit.
To facilitate channel estimation in the LSTM unit, we pre-
process complex-valued CFRs by extracting their real part and
imaginary part. So, the input vector xl ∈ R(2|SD|+4|SP|)×1

of the LSTM unit can be written as xl =
[
Re

([
Ĥl−1(k1)

])
,

Re
([

Ĥl(k2)
])

, Im
([

Ĥl−1(k1)
])

, Im
([

Ĥl(k2)
])]T

, where k1 ∈
SD∪SP and k2 ∈ SP. Expect for xl, hidden state hl−1 ∈ Rp×1

and cell state cl−1 ∈ Rp×1 from the last LSTM unit are also
the input of the current LSTM unit, with p being the hidden
layer dimension of the LSTM unit.

The calculation of the cell state and the hidden state simply
follows the normal process of LSTM network as follows

cl = fl & cl−1 + c̃l & il, hl = ol & tanh (cl) (4)

where & is the Hadamard product, and fl, c̃l, il, and ol ∈ Rp×1

are the forget gate, candidate cell, input gate, and output gate
of the LSTM unit, respectively. They can be calculated with
their own hidden weight matrix Wj ∈ Rp×p, input weight
matrix Vj ∈ Rp×(2|SD|+4|SP|), and bias vector bj ∈ Rp×1,
j ∈ {f, c, i, o}, as

ξj
l = σj (Wjhl−1 + Vjxl + bj) (5)

where ξj
l = fl, c̃l, il,ol, if j = f, c, i, o, respectively, and σj

is the sigmoid function if j '= c, otherwise it is the tangent
function. It is noteworthy that, for tracking channel, cl is a
hidden structure saving long-term channel information, thus
being the key of the output hl of the current LSTM unit.
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Fig. 2. Structure of the proposed network and channel estimation procedure.

2) MLP Network: Secondly, to increase the denoising abil-
ity of the neural network, we consider a two-layer MLP
network following each LSTM unit. For the MLP network,
the first layer processes the output of the LSTM unit by adopt-
ing the rectified linear unit (ReLU) function as the activation
function and outputs vector h′

l with a reduced dimension q(<
min{p, 2|SD|}) as channel frequency characteristics. Then,
the second layer reconstructs the channel estimates and makes
the final output yr

l = [Re([H̃l (k3)]), Im([H̃l (k3)])]T close to
the real channel yl = [Re ([Hl (k3)]) , Im ([Hl (k3)])]

T, where
[H̃l (k3)] and [Hl (k3)], k3 ∈ SD, denote the compensated and
real CFRs of data subcarriers, respectively. The MLP network
can be described as

h′
l = max(W′hl + b′

l, 0), yr
l = W′′h′

l + b′′
l (6)

where W′ ∈ Rq×p, W′′ ∈ R2|SD|×q, b′ ∈ Rq×1, b′′ ∈
R2|SD|×1 are weight matrices and bias vectors, respectively,
determined in the training process by minimizing the mean
squared error (MSE) between the real CFRs [Hl(k3)] and
compensated CFRs [H̃l(k3)]

MSE =
1

NtrainL|SD|
∑

Ntrain

L∑

l=1

∑

k3∈SD

∥∥∥Hl(k3) − H̃l(k3)
∥∥∥

2

with Ntrain denoting the number of the training packets.
Remark 1: The LSTM network utilizes the historical chan-

nel information to learn channel correlation in the time
domain, while the MLP network extracts channel charac-
teristics and reconstructs channel in the frequency domain.
Benefitting from the proposed structure, both the time and
frequency characteristics of the channel can be well learned
for tracking channel variation as well as mitigating noise.

B. Deep Learning Based Channel Estimation
Then, we employ the proposed LSTM-MLP network in the

DPA scheme which consists of three steps including initial
channel estimation, error compensation, and DPA procedure.
We introduce these steps in order as follows.

1) Initial Channel Estimation: In the first step, we utilize
the two long training symbols in the preamble to obtain the
initial channel estimation and the estimated CFR at the k-th
carrier is calculated using the LS algorithm as

Ĥ0(k1) = (YT1(k1) + YT2(k1))/2X(k1) (7)

where X(k1), k1 ∈ SD ∪ SP is the predefined frequency
domain long training symbol, and YT1 and YT2 represent the
received signals.

2) Error Compensation: After obtaining the estimated
CFRs in the last OFDM symbol, we use the LSTM-MLP
network to compensate error as

[
H̃l(k3)

]
= fLSTM−MLP(θ;xl) (8)

where θ denotes the parameters of the LSTM-MLP net-
work, and fLSTM−MLP(θ;xl) represents of the process of the
LSTM-MLP network given in (4)-(6).

3) DPA Procedure: Then H̃l (k3) is utilized for equalization
and the transmitted signal is determined as

X̂l(k3) = Q(Yl(k3)
/

H̃l(k3)), ∀k3 ∈ SD. (9)

Afterwards, we update the channel using the data pilots as

Ĥl(k3) = Yl(k3)
/

X̂l(k3), ∀k3 ∈ SD (10)

and deliver it to calculate the CFRs of the next OFDM symbol.
Benefitting from the DPA procedure, the neural network
obtains the reliable channel information as input.

Remark 2: Different from the conventional DPA schemes
[4], [5], [8], [9], when demodulating each OFDM symbol,
we employ error compensation before the DPA procedure
and take the current channel estimates in the pilot subcarriers
as part of the input, thus estimating the current channel as
accurately as possible before use it for equalization.

C. Computational Complexity Analysis
For the complexity of the proposed scheme, similar to [9]

we analyze the number of real-valued mathematical operations
including multiplication/division and summation/subtraction
needed to estimate the channel for one received OFDM
symbol. First, for the initial channel estimation, according
to (7) we need one complex-valued summation and one
complex-real-valued division to estimate CFR for one subcar-
rier, because the long training symbols are binary phase shift
keying (BPSK) modulated and the real-valued multiplication
for 2X(k1) in (7) can be calculated offline. So, the total num-
ber of real-valued multiplications/divisions and real-valued
summations/subtractions for estimating all subcarriers in SD∪
SP are 2(|SD|+|SP|) and 2(|SD|+|SP|), respectively. Second,
for error compensation, we analyze the online computational
complexity of the neural networks in terms of the required
number of the real-valued multiplications and summations
when computing the activation of all neurons in all layers. For
the LSTM network, according to (5), to obtain fl, c̃l, il, or ol,
the required number of real-valued multiplications and summa-
tions are both p2+p (2|SD| + 4|SP|), due to two matrix-vector
multiplications and two vector summations. Besides, to derive
the hidden state and cell state by (4), there are three Hadamard
products and one vector summation, leading to 3p real-valued
multiplications and p real-valued summations. For the MLP
network, there are one matrix-vector multiplication and one
vector summation for each layer according to (6), so the
number of the real-valued multiplications and that of the
real-valued summations for the two-layer MLP are both
pq + 2|SD|q. So, there are 4[p(2|SD| + 4|SP|)+p2]+3p+pq+
2|SD|q real-valued multiplications and 4[p(2|SD| + 4|SP|) +
p2] + p + pq + 2|SD|q real-valued summations for error
compensation in the proposed scheme. Finally, according
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TABLE I

V2V CHANNEL GENERATION PARAMETERS IN SUBURBAN ENVIRONMENT

to (9) and (10), for each data subcarrier we need one
complex-valued division for both data pilot acquisition and
data pilot based channel estimation. So, there are 16|SD|
real-valued multiplications/divisions and 6|SD| real-valued
summations/subtractions in the DPA procedure.

IV. SIMULATION RESULTS

In this section, we present simulation results to verify the
performance of the proposed channel estimation scheme.

A. Simulation Setting
To train the parameters of the LSTM-MLP network,

we obtain the training dataset by using the 3-D non-stationary
5G wireless channel model proposed in [11]. It is a
geometry-based stochastic model built on the WINNER II
channel model, which can simulate small-scale fading for
many scenarios, e.g., massive MIMO, V2X, high-speed train,
and mmWave, by setting proper channel parameters. Table I
lists the main channel parameters that we use to simulate for
a non-line-of-sight (NLOS) vehicle-to-vehicle (V2V) environ-
ment and the meaning of the parameters are the same in [11].
To improve generalization capability, we generate the channel
of the training dataset under different transmitter velocities
vT’s and receiver velocities vR’s, varying from 10 m/s (i.e.,
36 km/h) to 40 m/s (i.e., 144 km/h) with a granularity of
10 m/s. It is noteworthy that for the training process we do
not consider the impact of noise. Further, in the simulation
we set the transmitter and receiver antenna number to 1 and
adopt the omnidirectional antenna pattern. Besides, Table II
shows the detailed parameters of the proposed LSTM-MLP
architecture and those used in the training phase.

B. BER Performance
To analyze the effect of each cornerstone of the proposed

scheme, we firstly compare the bit error rate (BER) perfor-
mance of the proposed scheme with two baseline schemes:
the first one adopts LSTM-MLP for channel estimation but
without using the DPA procedure; the second one adopts
LSTM and DPA for channel estimation but without using
MLP. Fig. 3 shows the BER results for 16QAM with the
testing channel generated also by the channel model in [11],
for two vehicles moving with the same direction at transmitter
velocity vT = 108 km/h and receiver velocity vR = 72 km/h.
As compared with the first baseline, the proposed scheme
has superior performance in a medium or high signal-to-noise

TABLE II

PARAMETERS USED IN THE TRAINING PHASE

Fig. 3. Cornerstone analysis of the proposed scheme.

ratio (SNR) region (e.g., ≥ 15 dB), and the performance gap
increases with the SNR value, because DPA provides more and
more reliable channel estimates when the channel condition
improves. Besides, as compared with the second baseline,
though adding MLP following the LSTM unit, the LSTM-
MLP network learns the channel characteristics better and
achieves, for example, 5 dB gain for BER at 10−3.

To further verify the performance of the proposed
scheme, we also compare its BER performance with other
DPA schemes including STA [4], CDP [5], AE [8], and
STA-DNN [9]. Fig. 4(a) shows the BER results for 16QAM
and 64QAM when vehicles move with the opposite directions
but at untrained velocities vT = 150 km/h and vR =
150 km/h. In the simulation, for the AE and STA-DNN
schemes, we adopt the 40-20-40 and 15-10-15 hidden layer
dimensions for the AE and DNN networks, respectively.
Besides, the STA-DNN scheme is trained at SNR equal to
30 dB [9]. It can be seen that the deep learning based schemes,
including AE, STA-DNN, and the proposed one, outperform
the conventional DPA schemes such as CDP and STA. Because
the amending capability for equalized data symbols depends
on the modulation scheme the error propagation issue is
severer in the 64QAM case. But, it is observed from Fig. 4(a)
that, the gap between the proposed scheme and the AE or
STA-DNN scheme at any BER performance for 64QAM
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Fig. 4. BER comparison: (a) under different modulation schemes when vehicles move with the opposite directions and untrained velocities vT =150 km/h
and vR =150 km/h; (b) for 64QAM when vehicles move with the opposite directions and untrained different transmitter velocities given receiver velocity
vR = 150 km/h; (c) for 16QAM under different packet lengths in the V2VEO scenario generated by channel model [12] under maximum Doppler shift
1200 Hz.

is larger than 16QAM, implying that the proposed scheme
has superior error compensation effect due to the channel
tracking function of the proposed LSTM-MLP network. It is
noteworthy that the performance gain of the proposed scheme
over the AE or STA-DNN scheme is also at the cost of
computational complexity. For example, with the test network
setting it achieves about 3.3 (15) dB gain over the AE (STA-
DNN) scheme for 16QAM at BER equal to 10−2, but needs
about 13 (30) times of real-valued multiplication/division or
summation/subtraction operations than the AE (STA-DNN)
scheme. As unearthed in [13] that the performance of neural
networks highly depends on the SNR setting in the training
phase, we also study the LSTM-MLP network by retraining
it at SNR equal to 30 dB. One can notice that the proposed
scheme performs relatively better in a low SNR region but
worse in a high SNR region if training in a noisy condition.

To study the impact of Doppler shift, Fig. 4(b) compares
different DPA schemes for 64QAM when vehicles move with
the opposite directions but untrained velocity setting, where
receiver velocity vR = 150 km/h and transmitter velocity
vT is 72 km/h and 150 km/h, respectively. One can notice
that, as the transmitter velocity increases, the proposed scheme
has least performance loss among all compared schemes.
This is because, the LSTM network learns the channel time
correlation efficiently, although it cannot completely eliminate
the estimation error due to channel variation. On the contrary,
when the transmitter velocity is larger, the AE scheme has an
obvious performance loss, as it ignores the impact of channel
variation. For the STA-DNN scheme, though its performance
loss reduces, it still exists, because the scheme takes channel
variation into account but its performance can be constrained
by the accuracy of the STA output.

To study the impact of packet length on the proposed
scheme, Fig. 4(c) shows the BER performance of diverse DPA
schemes, tested with the channel in [12] for simulating the
V2V expressway coming (V2VEO) scenario under maximum
Doppler shift 1200 Hz. It is noteworthy that the LSTM-MLP
network tested here is still the one trained with the channel
generated according to [11]. It is verified from Fig. 4(c)
that, the performance of each scheme becomes worse as the
packet length increases. But, the proposed scheme has a less
performance loss because it has better error compensation
effect in each symbol, even the training dataset and test dataset
are generated completely from two different models.

V. CONCLUSION
In this letter, we proposed a novel LSTM-MLP based

channel estimation scheme with DPA method for the IEEE

802.11p standard in the fast time-varying vehicle channel
environments. To solve the error propagation issue caused
by noise and channel variation in the DPA procedure,
we use the LSTM-MLP network to mitigate noise and track
channel. Simulation results show the effectiveness of the
proposed scheme in fast time-varying channels, especially
for high-order modulation schemes or large-length packets.
For the future work, we will study how to reduce the
computational complexity of the proposed scheme while
achieving a good performance via exploiting attention
mechanisms to learn inherent channel characteristics over a
tunable number of coherence intervals [14].
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