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Abstract

Time series prediction can be generalized as 
a process that extracts useful information from 
historical records and then determines future val-
ues. Learning long-range dependencies that are 
embedded in time series is often an obstacle for 
most algorithms, whereas LSTM solutions, as a 
specific kind of scheme in deep learning, prom-
ise to effectively overcome the problem. In this 
article, we first give a brief introduction to the 
structure and forward propagation mechanism 
of LSTM. Then, aiming at reducing the consider-
able computing cost of LSTM, we put forward a 
RCLSTM model by introducing stochastic connec-
tivity to conventional LSTM neurons. Therefore, 
RCLSTM exhibits a certain level of sparsity and 
leads to a decrease in computational complexity. 
In the field of telecommunication networks, the 
prediction of traffic and user mobility could direct-
ly benefit from this improvement as we leverage 
a realistic dataset to show that for RCLSTM, the 
prediction performance comparable to LSTM is 
available, whereas considerably less computing 
time is required. We strongly argue that RCLSTM 
is more competent than LSTM in latency-stringent 
or power-constrained application scenarios.

Introduction
The analysis and prediction of time series has 
always been the key technique in an array of 
practical problems, including weather forecast-
ing, transportation planning, traffic management, 
and so on. In the domain of telecommunica-
tions, intelligent mechanisms have already been 
designed to track and analyze a large number of 
time-dependent events, such as data traffic, user 
location, channel load, service requests, etc. [1]. 
On the other hand, with the explosive prolifera-
tion of mobile terminals as well as the expansion 
of mobile Internet, the Internet of Things (IoT) 
and cloud computing, the mobile communica-
tion network has become an indispensable social 
infrastructure that is bound up with people’s lives 
and various areas of society [1]. However, how 
to guarantee the quality of service (QoS) and the 
quality of experience regardless of the dynamics 
of network traffic and user movements remains 
a challenging issue. One promising solution is to 
predict the varying pattern of data traffic and the 
location at which a mobile user will likely demand 
network service [1]. Accordingly, network oper-
ators can reserve some network resources, and 

react effectively to network changes in near real 
time [2]. However, since misplaced reservation of 
network resources and outdated predicted infor-
mation will not only fail to support the desired 
QoS but also likely degrade the performance 
of the overall network, prediction accuracy and 
complexity is of vital importance [3].

Time series analysis and prediction have been 
intensively studied for 40 years [4]. In statistical 
signal processing, the Autoregressive Integrat-
ed Moving Average (ARIMA) model has been 
used to study time-varying processes. However, 
one limitation of ARIMA is its natural tendency 
to concentrate on the mean values of the past 
series data. Therefore, it remains challenging to 
capture a rapidly changing process [5]. Support 
Vector Regression (SVR) has been successfully 
applied for time series prediction, but it also has 
disadvantages like the lack of structured means to 
determine some key parameters of the model [5]. 
In recent years, owing to the flexible structure, 
deep learning models are increasingly used in 
time series prediction [6]. Specifically, Recurrent 
Neural Networks (RNNs), one of the deep learn-
ing models, establish the reputation to cope with 
time series by recurrent neural connections. How-
ever, for any standard RNN architecture, the influ-
ence of a given input on the hidden layers and 
eventually on the neural network output would 
either decay or blow up exponentially when 
cycling around recurrent connections. To tackle 
this problem, Long Short-Term Memory (LSTM) 
has been revolutionarily designed by changing 
the structure of the hidden neurons in tradition-
al RNN [7]. Today, research and applications of 
LSTM for time series prediction are proliferating. 
For example, Wang et al. [2] used an LSTM-based 
model to predict the next-moment traffic load in 
a specific geometric area and Alahi et al. [3] pre-
dicted the motion dynamics in crowded scenes 
based on LSTM.

Generally, without customized hardware and 
software acceleration, the computing time of 
LSTM is proportional to the number of param-
eters. Given this disappointing characteristic, in 
this article, we present an approach to decrease 
the number of involved parameters, and thus put 
forward a new model that reduces the compu-
tational cost. Inspired by the interesting finding 
that Feed Forward Neural Networks (FFNNs) 
with sparse neural connections have a similar or 
even superior performance in many experiments 
compared to the conventional FFNNs [8], we 
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introduce random connectivity to the conven-
tional LSTM, thus forming a new architecture with 
sparse neural connections, called the Random 
Connectivity Long Short-Term Memory (RCL-
STM).

Our simulation model is a three-layer stack 
RCLSTM neural network with a memory cell size 
of 300 per layer. Taking account of the signifi-
cance of important typical scenarios and avoid-
ing possible negative impacts from datasets, we 
leverage both practical network traffic data from 
GÉANT networks, a pan-European research net-
work [9], and realistic user-trajectory data [10]. 
Our simulation results show that when compared 
to LSTM, RCLSTM is highly capable of traffic pre-
diction and user-location forecasting with less 
than half the neural connections. In particular, 
in traffic prediction tasks, RCLSTM with even 1 
percent neural connections performs better than 
ARIMA, SVR, and FFNN, while reducing the com-
puting time by around 30 percent compared with 
the conventional LSTM. Moreover, the result of 
mobility prediction indicates that the prediction 
performance of RCLSTM is also comparable with 
the conventional LSTM.

An Overview of 
Artificial Neural Networks and LSTM

Artificial Neural Networks (ANNs) are construct-
ed as a class of machine learning models that 
can eliminate the drawbacks of the traditional 
learning algorithms with rule-based programming 
[11]. Depending on the existence of the connec-
tion between the neurons within the same layer, 
ANNs can be classified into two main categories: 
FFNNs and RNNs. In FFNNs, there is no connec-
tion between the neurons within the same layer, 
and all neurons cannot be connected across lay-
ers, which means the information flows in one 
direction, i.e., from the input layer, through the 
hidden layers (if any), to the output layer. Instead, 
as depicted in Fig. 1, RNNs allow neurons within 
the same hidden layer to be connected, by calcu-
lating the output of the current moment from the 
input of the current moment and the hidden state 
of the previous moment. Therefore, RNNs embed 

historical input information in the network’s inter-
nal state, and are thereby capable of mapping all 
of the historical input data to the final output. The-
oretically, RNNs are more competent than FFNNs 
to handle such long-range dependencies. Howev-
er, in practice, RNNs seem unable to accomplish 
the task. This phenomenon has been explored in 
depth by Hochreiter and Schmidhuber [7]. They 
explained some pretty fundamental reasons why  
such learning might be difficult.

Long Short-Term Memory networks, usually 
just called “LSTMs,” are a special category of 
RNNs that are suitable for learning long-term 
dependencies [7]. The key part that enhances 
LSTMs’ capability to model long-term dependen-
cies is a component called the memory block 
[7]. As illustrated in Fig. 1, the memory block 
is a recurrently connected subnet that contains 
functional modules called the memory cell and 
gates. The memory cell is in charge of remem-
bering the temporal state of the neural network 
and the gates formed by multiplicative units are 
responsible for controlling the pattern of infor-
mation flow. According to the corresponding 
practical functionalities, these gates are classified 
as the input gate, the output gate and the forget 
gate. The input gate controls how much new 
information flows into the memory cell, while 
the forget gate governs how much information 
of the memory cell still remains in the current 
memory cell through recurrent connection, and 
the output gate determines how much informa-
tion is used to compute the output activation 
of the memory block and further flows into the 
rest of the neural network. Figure 1 highlights 
the details of the working mechanism of LSTM. 
Through the cooperation between the memory 
cell and the gates, LSTM is endowed with a pow-
erful ability to predict time series with long-term 
dependences.

Since the invention of LSTM, a number of 
scholars have proposed several improvements 
with respect to its original architecture. Greff et al. 
[12] evaluated the aforementioned conventional 
LSTM and eight different variants thereof (e.g., 
gated recurrent unit (GRU) [13]) on three bench-
mark problems: TIMIT, IAM Online and JSB Cho-
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Figure 1. An illustration of one three-layer LSTM network.
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rales. Each variant differs from the conventional 
LSTM by few single and simple changes. They 
found that the conventional LSTM architecture 
performs well on the three datasets, and none of 
the eight investigated modifications significantly 
improve the performance.

Random Connectivity for LSTM
The conventional LSTM (including its variants) 
follows the classic pattern that neurons in each 
block are fully connected and this connectivity 
cannot be changed arbitrarily. However, it has 
been found that for certain functional connec-
tivity in neural microcircuits, random topology 
formation of synapses plays a key role and can 
provide a sufficient foundation for specific func-
tional connectivity to emerge in local neural 
microcircuits [14]. This discovery is different from 
the conventional cases where neural connectivity 
is considered to be more heuristic so that neurons 
need to be connected in a more fully organized 
manner. It raises a fundamental question as to 
whether a strategy of forming more random neu-
ral connectivity, like in the human brain, might 
yield potential benefits to LSTM’s performance 
and efficiency. With this conjecture, we built up 
RCLSTM.

In RCLSTM, neurons are randomly connect-
ed rather than being fully connected as in LSTM. 
Actually, the trainable parameters in LSTM only 
exist between the input part, i.e., the combina-
tion of the input of the current moment and the 
output of the previous moment, and the func-
tional part, i.e., the combination of the gate layers 
and the input update layer. Therefore, the LSTM 
architecture can be further depicted in Fig. 2. In 
our approach, whether the LSTM neurons are 

connected or not can be determined by certain 
randomness. Therefore, we use dashed lines to 
denote that the neural connections can be added 
or omitted, as depicted in the upper part of Fig. 2. If 
the neurons are fully connected, then it becomes 
a standard LSTM. On the other hand, if the neu-
rons are randomly connected according to some 
rules (which are covered in detail below), then an 
RCLSTM is created. The lower right part of Fig. 2 
shows an example RCLSTM structure in which the 
neural connections are randomly sparse, unlike 
LSTM. The fundamental difference between RCL-
STM and LSTM is illustrated in Fig. 2, so let us 
move to the implementation strategy of randomly 
connecting neurons.

First, we attach a probability value to each 
pair of neurons that are connected by a dashed 
line in the upper part of Fig. 2. The probability 
values can obey arbitrary statistical distributions, 
and we choose uniform distribution in our sim-
ulations given its computational efficiency. The 
probability value indicates the tendency that the 
corresponding pair of neurons will be connected. 
Then we assume all neurons are connected with 
the same probability and carefully set a threshold 
to determine the percentage of connected neu-
rons. If the probability values are greater than 
the threshold, the corresponding pairs of neu-
rons are connected. Otherwise, they are pro-
hibited from being connected. This process can 
be visualized as turning dashed lines into solid 
lines, as shown in the right-hand transformation 
of Fig. 2. Therefore, the RCLSTM structure can 
create some sparsity, considerably decreasing 
the total number of involved parameters to be 
trained and reducing the computational loads of 
the whole RCLSTM network.

Figure 2. The comparison between LSTM and RCLSTM in the view of generating process of neural connections.
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Numerical Simulations for  
Traffic and Mobility Prediction

In this section, we focus on verifying the perfor-
mance of the proposed RCLSTM on traffic pre-
diction and user-location forecasting. In particular, 
we construct a three-layer RNN similar to the 
LSTM network in Fig. 1 but the recurrent memo-
ry blocks are replaced by the newly designed 
RCLSTM blocks in Fig. 2. For the sake of sim-
plicity, this RNN is directly called RCLSTM in the 
following statement. First, we take advantage of 
RCLSTM to predict traffic and user mobility, in 
particular comparing the prediction accuracy of 
RCLSTM with that of other algorithms or mod-
els. Then, we adjust the number of training data 
samples and the length of input sequences to 
investigate the influence of these factors on the 
prediction accuracy of RCLSTM.

Data Description and Evaluation Metrics

We evaluate the model’s performance on traf-
fic prediction depending upon real traffic data 
from a link in the GÉANT backbone networks [9]. 
GÉANT is a pan-European data source for the 
research and education communities. These traffic 
data are sampled every 15 minute during a four-
month period in 2005 and the unit for data points 
is Kbps. In this study, we select 10772 traffic data 
points therein. In order to make the training phase 
of ANN-based models converge faster and effec-
tively avoid the bad local optimal solution [11], 
we first take the logarithm to base 10 of the raw 
data and then carry out a normalization process. 
Real-time prediction of data traffic requires con-
tinuous data input and learning. Hence, we intro-
duce a notion of sliding window, which indicates 
a fixed number of previous timeslots to learn and 
then predict the current data traffic.

The other dataset to evaluate the capability 
of RCLSTM comes from [10], which contains 
the location history of several mobile users from 
2015-08-06 to 2015-11-04 with manually marked 
important locations for every person in 1-hour 
intervals. The attributes of this mobility data-
set include date-time, latitude, longitude, and 
assigned location ID. In this article, we select five 
users’ trajectories therein and assign their location 
IDs as one-hot vectors. Afterward, consistent with 
the procedures to preprocess the GÉANT traffic 
dataset, we use the sliding window to slice the 
processed data and finally split them into a train-
ing set and a test set.

Finally, for traffic prediction, Root Mean 
Square Error (RMSE) is applied to measure the 
difference between the predicted values and the  
actual values. On the other hand, the accuracy 
level, which is defined as the ratio of the number 
of correct predictions to the total number of pre-
dictions, is chosen to evaluate the human mobility 
prediction results.

Testing Results and Analyses

Traffic Prediction: Figure 3 reveals the RMSE and 
the computing time under different percentag-
es of neural connectivity in RCLSTM (note that 
100 percent connectivity means the conventional 
LSTM). Notably, the probability of neural connec-
tions obeys a uniform distribution between 0 and 
1. In addition, the size of RCLSTM’s memory cell 

is set at 300, while the ratio between the number 
of training samples and the number of test sam-
ples is set at 9:1, and the length of input traffic 
sequences is 100. Figure 3 shows that the RMSE 
of RCLSTM is slightly larger than that of LSTM, 
but RCLSTM with very sparse neural connections 
(i.e., 1 percent) reduces the computing time by 
around 30 percent compared with the baseline 
LSTM. In addition, the computing time almost 
stops increasing when the percentage of neu-
ral connections is larger than 20 percent, which 
reflects that the method for accelerating calcu-
lation only works efficiently on extremely sparse 
matrices. Figure 4 intuitively illustrates the actual 
and predicted traffic values by RCLSTM. It can be 
observed from the figure that the predicted values 
can match the variation trend and features of the 
actual values very well. Therefore, the simulation 
results indicate that RCLSTM can yield acceptable 
prediction capability, and effectively decrease the 
computational loads and complexity.

We further compare RCLSTM with three well 
known prediction techniques: SVR, ARIMA, and 
FFNN. The hyper-parameters of these algorithms 
are as follows:
•	 SVR: The number of input features is 100, 

the kernel is a radial basis function (RBF) and 
the tolerance for the stopping criterion is 
0.001.

•	 ARIMA(p, d, q): The number of autoregres-
sive terms (i.e., p) is 5, the number of non-
seasonal differences needed for stationarity 
(i.e., d) is 1, and the number of lagged fore-
cast errors in the prediction equation (i.e., q) 
is 0.

Figure 3. The performance of RCLSTM in terms of 
RMSE and computing time.

Figure 4. Predicted traffic data and actual traffic 
data.
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•	 FFNN: The number of input features is 100 
and the numbers of neurons in both the first 
hidden layer and the second hidden layer 
are 50.
Since LSTM with a memory cell size of 30 has 

almost as many trainable parameters as RCLSTM 
with a memory cell size of 300 and 1 percent 
neural connections, we put it into the compari-
son list as well. The simulation results are shown 
in Fig. 5, which reveals that LSTM with a memory 
cell size of 300 performs much better than the 
others, followed by RCLSTM with a memory cell 
size of 300 and 1 percent neural connections. 
Interestingly, RCLSTM performs better than 
LSTM with the memory cell size of 30, which 
is probably due to a degree of overfitting that 
exists in the latter [11].

Human Mobility Prediction: The results of 
user-mobility prediction with RCLSTM are shown 
in Fig. 6, which demonstrates the prediction accu-
racy for the five users by RCLSTM, where the 
probability of neural connections obeys a uniform 
distribution between 0 and 1. In addition, the size 
of the memory cell is 150, the length of input 
sequences is 12, and the training samples account 
for 90 percent of the processed data. There is a 
slight difference in the prediction results for differ-
ent users. For example, Users A and D are both 
university students with a part-time job, and thus 
they almost follow the same behavioral pattern in 

school or work, which results in highly expected 
predictability. On the other hand, User E is run-
ning his own business and is more likely to travel 
a lot with an unfixed schedule, consequently hav-
ing low expected predictability [10]. Although the 
prediction accuracy of RCLSTM is not as good as 
that of LSTM, RCLSTM with high sparsity of neural 
connections can compute faster than LSTM, simi-
lar to the traffic prediction scenario.

RCLSTM shows promise for manifesting strong 
traffic and user-mobility prediction capabilities 
while reducing the number of parameters to be 
trained, which in effect decreases the computa-
tional load and complexity.

Conclusion
In this article, we have addressed the impor-
tance of leveraging deep learning for time 
series prediction. In particular, we have rein-
vestigated the issues of traffic prediction and 
user-mobility forecasting with deep learning 
and proposed a new model named RCLSTM 
by revolutionarily redesigning the convention-
al LSTM. The basic idea behind RCLSTM is to 
construct neural networks by forming and real-
izing a random sparse graph. We have checked 
the effectiveness of RCLSTM by predicting the 
dynamics of traffic and user locations through 
various temporal scales. In traffic prediction, 
we have demonstrated that RCLSTM with 1 
percent neural connections reduces the com-
puting cost by 30 percent compared with the 
conventional LSTM. Although the character-
istic of sparse neural connections may cause 
a performance degradation of approximate-
ly 25 percent, RCLSTM still outperforms SVR, 
ARIMA, FFNN, and LSTM with the same num-
ber of parameters. As for user-mobility pre-
diction, we can safely draw the conclusion 
that RCLSTM is quite close to LSTM in terms 
of prediction accuracy. In summary, it can be 
expected that RCLSTM with lower computing 
costs and satisfactory performance will play an 
essential role in time series prediction in future 
intelligent telecommunication networks.
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