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Abstract: As an inevitable trend of future fifth generation (5G) networks, software-defined architecture has many advantages in
providing centralised control and flexible resource management. However, it is also confronted with various security challenges
and potential threats with emerging services and technologies. As the focus of network security, intrusion detection systems
(IDSs) are usually deployed separately without collaboration. They are also unable to detect novel attacks with limited intelligent
abilities, which are hard to meet the needs of software-defined 5G. In this study, the authors propose an intelligent IDS taking
the advances in software-defined technology and artificial intelligence based on software-defined 5G architecture. It flexibly
integrates security function modules which are adaptively invoked under centralised management and control with a global view.
It can also deal with unknown intrusions by using machine learning algorithms. Evaluation results prove that the intelligent IDS
achieves better performance with lower overhead. It is also verified that the selected machine learning algorithms show better
accuracy and reduced false alarm rate in flow-based classification.

1 Introduction
Software-defined fifth generation (5G) architecture will be a
crucial tendency in the development of future 5G networks [1]. It
takes the advantage of software-defined network (SDN) [2] and
network functions virtualisation (NFV) [3] through centralised
management and dynamic resource allocation to meet the demands
of 5G networks. Besides, the separation of the control and
execution planes also facilitates the supervision of network status
and the collection of information. With the uprising of novel
attacks, it will also be faced with various challenges and security
threats. As a result, new network security architecture and systems
are desperately needed to enhance the security of software-defined
5G networks [4].

As an essential technology in network security, intrusion
detection systems (IDSs) have received more and more concerns in
efficiently detecting malicious attacks. Existing IDSs are separately
deployed within restricted areas and hard to cooperate with each
other. Moreover, they are usually signature based by matching
behaviours of incoming intrusions with historical knowledge and
pre-defined rules, which are unable to detect novel attacks
intelligently.

To overcome the limitation of traditional IDS, artificial
intelligence (AI) has been employed for intelligent detection. They
classify abnormal traffic using machine learning techniques with a
self-learning ability [5]. At present, there have been a few
researches combining IDS and AI. However, they are still
inadequate for coordinated detection considering the evolution and
development of network systems.

In this paper, we propose an intelligent IDS based on software-
defined 5G architecture. Benefit from the software-defined
technology, it integrates relevant security function modules into a
unified platform which are dynamically invoked under centralised
management and control. Besides, it applies machine learning to
intelligently learn rules from huge quantities of data and detects
unknown attacks based on flow classification. It uses random forest
(RF) for feature selection and combines k-means++ with adaptive
boosting (AdaBoost) for flow classification. The proposed system
enhances the strength of security protection for future 5G
networks.

The remainder of this paper is organised as follows. Section 2
discusses the related researches in the field of intrusion detection
by machine learning. Section 3 provides an overview of the

architecture and describes each module in details. Section 4
introduces the proposed machine learning algorithms for feature
selection and traffic classification. Section 5 presents the
performance evaluation and results. Section 6 summarises this
paper and proposes potential future work.

2 Related work
As SDN dynamically manages network configurations and controls
packet processing in a centralised manner, it has well satisfied the
evolution demand of cellular networks in the 5G era, which aims to
provide flexible service provisioning mechanisms [6]. Therefore,
the combination of 5G and SDN has attracted a lot of research
interest. In [7], a new paradigm called SoftAir toward next
generation (5G) wireless networks is introduced. The novel ideas
of NF cloudification and network virtualisation are exploited to
provide a scalable, flexible and resilient network architecture.
However, there are still challenges in realising SoftAir. An
architecture of 5G software-defined vehicular network integrated
with SDN, cloud computing and fog computing technologies is
proposed in [8]. A minimum transmission delay can be achieved by
avoiding frequent handover between vehicles to meet requirements
of intelligent transportation systems. However, there are still
challenges to flexibly combine different types of network
architectures in 5G vehicular networks.

However, with the fast development of software-defined 5G
networks, the emergence of unknown attacks also poses severe
security challenges. The advance of SDN has promoted the
evolution of wireless network security systems through supporting
the supervision of network status and the collection of flow
statistics. It also provides network-layer security services such as
packet routing, identity authentication and automated security
management in a global view which facilitates the detection and
prevention of attacks [9]. Some previous studies have investigated
the ability of SDN and introduces several mechanisms to defend
specific types of attacks. In [10], the framework adaptively
classifies the network traffic into different classes according to the
quality of service requirements for SDNs. It can be realised by
exploiting the superior computation capacity, the global visibility
and the inherent programmability of the network controller.
Bawany et al. [11] present a comprehensive survey of existing
SDN-based distributed denial of service (DDoS) attack detection
solutions and present an SDN-based proactive DDoS defence
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framework (ProDefense). The system is capable of meeting
application-specific DDoS attack mitigation requirements. Huang
et al. [12] study the security-enforced packet processing problem in
deep packet inspection-enabled SDN and designs a two-phase
algorithm that can quickly select proxy and find routing paths for
incoming flows. He et al. [13] propose a software-defined virtual
traffic classification framework (vTC), a design of virtual NFs to
flexibly select and apply the best suitable flow features and most
effective machine learning classifiers with the help of an NFV
controller which brings substantial flexibility and scalability. These
proposed schemes are applicable to solve specific types of security
problems and can perform well under certain scenarios.

As the focus of network security, network intrusion detection
has gained intensive discussion and wide investigations in recent
years [14]. Most of them depend on a set of manual rules, which
are still unable to identify emerging diverse attacks intelligently. In
terms of this, various machine learning algorithms have been
adopted in traffic-based classification in solving such problems
[15]. Le et al. [16] propose a network-based intrusion detection and
prevention system relying on SDN approach which might reduce
the cost and decrease the latency of the whole system. It performs
C4.5 algorithm to build the decision tree for classifying the traffic.
The proposed work in [17] focuses on identifying network
anomalies efficiently under SDN environment using bat algorithm
metaheuristic method for feature extraction and entropy-based
decision tree for traffic classification. In [18], Kim et al. propose a
three-layer recurrent neural network (NN) acting as a neural
classifier for misuse detection. A deep NN model which is capable
of automatically finding correlations between flow records and
detecting network intrusions is built in [19]. The optimal hyper-
parameter for the model including the number of hidden layers and
hidden neurons need to be adjusted. However, current IDS systems
monitor the network status through a single point isolated and
cannot coordinate with each other. Besides, they also lack the
combination of flow collection, classification and attack response
along the whole process of intrusion detection and prevention.
Therefore, we propose an intelligent IDS which flexibly integrates

and coordinates security function modules to detect network
intrusions adaptively and dynamically.

3 Architecture
The architecture of our proposed intelligent IDS is illustrated in
Fig. 1. There are three layers: forwarding layer, management and
control layer and data and intelligence layer. Forwarding layer
consisting of open flow-controlled entities in 5G (OFs) is
responsible for traffic monitoring and capturing. It can collect and
upload network flows to the control layer, and block malicious
flows according to the instructions of the controller. Management
and control layer identifies suspicious flows and detects anomalies
preliminarily using uploaded flow information. It also generates
protection strategies according to decisions made by the intelligent
layer and instructs forwarding layer. In data and intelligence layer,
intelligent centre makes further analysis and judgement through
feature selection and flow classification using adaptive machine
learning algorithms. 

3.1 Forwarding layer

This layer is in charge of forwarding packets between OFs. It
provides management and control layer with real-time network
status through collecting and uploading anomaly information from
distributed OFSs. Besides, intrusions can also be blocked by OFSs
through dropping malicious packets under the command of upper
layers.

3.2 Management and control layer

3.2.1 Packet collecting and flow partitioning: This layer
provides a more global view of the entire 5G network. The status
monitoring module supervises network status and periodically
requests packets from OFs. It collects packets uploaded by OFs for
further analysis. Flow partition module processes and parses traffic
statistics, clusters packets into flows and generates six-tuple flow
IDs as follows:

Fig. 1  Machine learning-based IDS for software-defined 5G network
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{srcip, dstip, srcport, dstport, duration, protocol} (1)

The flow IDs are used to define and label different flow records
representing specific network connections and activities. The
packet collection and inspection is performed at a regular time
interval. The time interval is delicately selected in order to avoid
undesirable delays for anomaly identification and scale packet
overhead to an acceptable level.

3.2.2 Anomaly detection: Before exploiting elaborate intrusion
detection in the intelligence layer, some basic flow statistics are
used to roughly recognise abnormal behaviours and potential
anomalies. The module applies entropy analysis [20] based on
Shannon theory to detect distribution variations of packet
sequences. The entropy of a random variable x is

H(x) = − ∑
i = 1

N
p(xi)log(p(xi)) (2)

where xi is the value of x ranging from 1 to N. p(xi) calculates the
possibility of x being xi observed among all the feasible values.
Here, we consider four basic characteristics: source address, source
port, destination address, destination port as variables in the above
(2) which are sketched from packets in every consecutive duration.
Within the given period of time, we compute a new entropy H(x) of
each characteristic to detect anomalies in a subsequent way. If E
stands for the mean entropy and S represents the corresponding
standard deviation, there will be possible anomalies if H(x) falls
outside the duration between (E − S) and (E + S). The suspicious
groups of flows are delivered to the intelligent layer for further
analysis [15].

3.2.3 Task arrangement and strategy distribution: The
modules respond to detected intrusions through managing and
organising specific actions for defending attacks. They develop
optimal strategies, arrange objective tasks and distribute them to
OFs in forwarding layer. OFs are instructed to drop packets of
malicious flows and protect the 5G network from being a further
attack.

3.3 Data and intelligence layer

3.3.1 Feature selection: The feature selection module is designed
to extract concerned features of sceptical flows and find an optimal
subset of preferable features. They are used to precisely describe
and discriminate a flow. The module can process high-dimensional
data efficiently and remove irrelevant data, which improves the
learning efficiency and predictive accuracy of flow classification.
The selected features are considered optimal if they are closely
correlated to the correct classification result while not redundant.
In our system, various algorithms can be selected to measure the
relevance and redundancy of features.

3.3.2 Traffic classification: The module classifies network flows
by marking whether it belongs to specific types of attacks or
benign traffic. The output of the classifier labels each flow as a
certain class. Combination algorithms can be used to increase the
accuracy of machine learning classification.

3.3.3 Analysis and decision making: According to the
classification results, the module makes a comprehensive analysis
of the real-time network status and determines whether the network
is under attack or not. The analysis results can be a feedback to the
former two modules and assist them in selecting algorithms
adaptively. More importantly, they are delivered to the controller
for tactics arrangement and defence.

3.3.4 Big data centre: As an auxiliary module in data and
intelligence layer, big data centre maintains various bases of
historical records and knowledge of intrusions to facilitate
classifier training and decision making. It is comprised of libraries
of typical flow features, user activity models and expertise advice.
The data is persistently revised and updated.

4 Intelligent intrusion detection process
In our system, we employ selected machine learning methods in
two critical steps of intrusion detection. First, we use RF to select
an optimal subset of flow features through measuring variable
importance. Afterwards, a hybrid clustering-based AdaBoost will
classify traffic into different classes of attacks with selected
features as input.

4.1 Random forest

RF [21] is a collection of uncorrelated structured decision trees
deemed as forest. Those trees make classifying judgements
independently and the final result will be the one gaining the
majority votes. The concept of ‘random’ typically manifests in two
aspects as follows:

• If the number of input training data is N, we take N samples
randomly with replacement from the original data. The selected
samples are likely to be repeated and will be used for growing
the tree. Meanwhile, those data which has not been selected to
build a tree is known as out-of-bag (OOB) data. The data is
utilised to measure the classification accuracy of the forest.

• For each tree, we choose m (m < M, usually m = M) features
out of M-attribute entire set randomly as input variables without
replacement. The value of m remains unchanged during the
whole process of forest construction. While determining the best
feature at each splitting node, we calculate Gini ratio [22] of m
attributes and choose the one with the highest value to split the
node. We will stop growing the tree when the selected attribute
is the same as its father node.

The algorithm is a valid ensemble machine learning algorithm
used for classification and regression. There is no need to prune
each tree as it grows in case of over-fitting under those two
restrictions. In particular, it can also be used to select features by
ranking the significance of different features. The measuring of
variable importance is based on classification accuracy of OOB
data. The main steps are showed in Fig. 2. 

We obtain the variable importance of the M features and select
those with higher values in accordance with the pre-established
number of features or retaining ratio. The importance of each
feature is measured by the influences it exerts on the result of
classification. A specific feature of higher importance usually
degrades the OOB accuracy to a great extent.

4.2 Hybrid clustering-based AdaBoost

There are two steps in traffic classification. For the first stage, we
make a preliminary judgement by adopting k-means++ to divide
the traffic into two clusters which most probably represent the
normal and abnormal instances. Later, we further partition the

Fig. 2  Importance measurement of flow features using RF
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anomaly clusters into four main classes of attacks using the
ensemble algorithm AdaBoost.

4.2.1 k-Means++: As an unsupervised learning algorithm, the
dominating object of applying k-means clustering method is to
separate and group unlabelled traffic into normal and attack classes
for coarse-grained classification. However, it is worth noting that
the number of centroids k requires to be pre-determined and the
random selection of initial centroids may result in locally optimal
clustering. Hence, we introduce an improved k-means++ technique
[23] aiming at choosing the optimal clustering centres. The
fundamental principle we comply with is to make the distances
between any initial clustering centres as far as possible. The
process of initialling centroids is described in Fig. 3. 

For step 3, the key point is that how to reflect the relationship
between the distance variable D(xi) of one sample and its
possibility of being selected. We aggregate the distance D(xi) of
each point into a whole assemblage in sequence and compute the
sum of them as Sum[D(xi)] = D(x1) + D(x2) + ⋯D(xN). Then a
random value λ is selected which is located in the range of 0 to
Sum[D(xi)]. We update the value of λ by computing λ = λ − D(xi)
from i = 1 to N until it falls below zero. At this time, the section
which λ drops in with the length D(xi) indicates the corresponding
sample point i to be the next centroid. Now that the value of λ is
stochastic, there is more chance that it drops in the section of a
larger D(xi). In this paper, we set K = 3, considering that two of the
four kinds of attacks [user-to-root (U2R), remote-to-local (R2L)]
are easily confused with the normal flows.

4.2.2 Adaptive boosting: AdaBoost is a strong ensemble
classifier linearly composed of different weak classifiers after
trained by the same set of data [24].

The weight of each sample is same while initialising the
training data. At each iteration, the data distribution is adaptively
altered through changing the weights of samples. The weight of
each sample which is mis-classified in the former basic classifier
will be improved in the next round of training. In contrast, it will
be reduced if it is correctly classified. In this way, more attention is

laid on the samples hard to be properly classified to promote the
overall performance.

All the weak classifiers after training are combined assigned
with different weights of contribution and form a strong classifier.
Thus, the final result is determined by votes of each basic
classifiers with the distinct right of speech α. α is inversely
proportional to the classification error rate e, which indicates that
those weaker classifiers gaining a higher classification accuracy
contribute more to the final result. Each weak classifier is regulated
by factor α and the linear formation of them achieves a better
result.

In most cases, each weak classifier is constructed by a one-layer
decision stump, which splits once solely based on a single feature.
It is worth noting that the feature used at each decision tree for
decision making in classification is optimally chosen from N
features. The feature used at each classifier is totally independent
and can be reused again.

5 Experiment result
In this section, we conduct several experiments to evaluate our
proposed system and selected algorithms.

5.1 Dataset

The KDD Cup 1999 dataset has been widely used to evaluate the
performance of intrusion detection methodologies in recent years
[19]. It contains ∼5,000,000 network connections in the training set
and nearly 2,000,000 instances in the testing set. Each single
connection vector consists of 41 features sorted into three classes:
basic connection-based feature, content-based feature and traffic-
based feature. Each traffic sample is labelled as either a normal
flow or a malicious intrusion which exactly falls into four different
categories in accordance with their own characteristics: DoS, R2L,
U2R and probe. Since the amount of the original dataset is huge,
we perform a five-class flow classification emulation using 10% of
the whole KDD99 intrusion detection raw dataset. The distribution
of both training and testing data marked by their attack type is
summarised in Table 1. 

Since there are redundant records in the original KDD99 data, it
causes the learning algorithms to be biased toward some frequent
records. To solve the issue, NSL-KDD [25], as an improvement,
removes duplicate records and maintains a more balanced
distribution of the dataset.

5.2 Evaluation metrics

Generally, the performance of the IDS is evaluated in the light of
precision (P), recall (R), F-score (F), accuracy (AC) and false
positive rate (FPR) calculated in the formulas below. We desire a
system with higher detection rate as well as lower false rate.

Precision (P): The percentage of intrusion predicted that it truly
existed

P = TP
TP + FP (3)

Recall (R): The number of correctly predicted intrusions versus all
the presenting intrusions

R = TP
TP + FN (4)

F-score (F): Makes a tradeoff between the precision (P) and recall
(R) to reach a better measurement of classification accuracy

F = 2
(1/P) + (1/R) (5)

Accuracy (AC): Manifests the flows exactly classified over the
entire traffic traces

Fig. 3  Main steps of k-means++ algorithm
 

Table 1 Distribution of data used in our evaluation
Class Training dataset Testing dataset

Number of
samples

Percentage, % Number of
samples

Percentage, %

normal 97,278 19.69 60,593 19.48
probe 4107 0.83 4166 1.34
DoS 391,458 79.24 229,853 73.9
U2R 52 0.01 228 0.07
R2L 1126 0.23 16,189 5.2
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AC = TP + TN
TP + TN + FP + FN (6)

FPR: Indicates the percentage of normal traffic which is mis-
classified as attacks

FPR = FP
FP + TN (7)

where TP is the number of attacks precisely detected; TN is the
number of normal traffic precisely classified; FP is the number of
normal traffic incorrectly classified; and FN is the number of
attacks unsuccessfully detected.

To our common sense, various intrusions generate different
levels of consequences to the entire network. Hence, another
comparative metric is defined to measure the cost damage of
misclassification for different attacks per sample calculated as
below:

cost = 1
N ∑

i = 1

n

∑
j = 1

n
Mi j × Ci j (8)

where Mi j indicates the number of instances of class i mis-
classified in class j. Ci j is the cost value representing the penalty
for each sample obtained from cost matrix [26] employed for
KDD99 as shown in Table 2. Let N be the total number of samples
for testing. 

5.3 Performance analysis

We intend to evaluate the proposed system from three aspects. In
Section 5.3.1, we assess the selected algorithms for feature
selection and flow classification and the implementation of their
combination. In Section 5.3.2, we verify the optimality and
convergence of our system and make comparisons with existing
solutions. In Section 5.3.3, we estimate the detection ability for
different classes of flows when trained with various datasets.

5.3.1 Evaluations on selected algorithms: In Table 3, we verify
the advance of RF algorithm for feature selection through the
performance of detection using the sub-feature dataset in contrast
with a full-feature dataset. It is encouragingly illustrated that the
selected features contribute more to differentiate attack traffic

giving rise to higher accuracy and lower false rate. As noted from
the table, the selected features achieve a slight reduction of
operating time as well as lessening the computational cost without
degrading the overall performance. It is proved that the selected
algorithm for optimal feature selection performs well. 

We evaluate the combination of our selected algorithms (i.e. RF
and a hybrid clustering-based AdaBoost) comparing with several
groups of traditional feature selection and machine learning
algorithms in Table 4. Since we know that the selection of
algorithms for feature selection and traffic classification have a
mutual influence on each other, we care more about the
performance of the combination of them. As we can see, it is
obvious that the selected methods generate a better performance
among all the combination alternatives in every metric. 

5.3.2 Evaluations on the performance of the proposed
system: We measure the overhead that the proposed system occurs
using the above-mentioned concept cost. We compare our system
with [20] in Fig. 4. The metric indicates that the more mis-
classified flows there are when making a classification, the more
overhead the system generates for misclassification. As the number
of flows grows, both systems become more well-trained to make
classification with fewer faults. It can be seen that our system
produces more overhead initially than [20]. However, as the
training data increases, our system produces less overhead than its
comparison later. We can see that our system can produce
sufficiently low overhead when trained with enough amounts of
data. 

There have been several intelligent architectures proposed to
detect and prevent network intrusions under SDN environment [27,
28]. We make a comparison with previous researchers in terms of
classification accuracy and error rate as shown in Table 5. The
processing time of each system using a portion of flows in the
dataset is also illustrated in Fig. 5 to evaluate the efficiency of
systems. It can be noted that the proposed system improves the
classification accuracy without sacrificing much time complexity.
This is attributed to the preliminary clustering technique helping to
group data into normal and attack classes in preparation for fine-
grained classification, which consumes more time than a single
algorithm. Also, the need of building pre-defined NTs in the
ensemble algorithm AdaBoost also increases the overall processing
time. 

Except for the above evaluations on the performance of the
system, the convergence of the detection process using clustering-

Table 2 Cost matrix
Class Normal Probe DoS U2R R2L
normal 0 1 2 2 2
probe 1 0 2 2 2
DoS 2 1 0 2 2
U2R 3 2 2 0 2
R2L 4 2 2 2 0

 

Table 3 Performance comparison using different number of features
Number of features Precision, % Recall, % F-score, % FPR, % Time, s Cost
23 94.48 92.62 91.02 0.54 110 0.241
41 93.60 92.06 90.03 0.54 149 0.257
 

Table 4 Performance comparison using different combinations of algorithms
Combination of algorithm Number of features Precision, % Recall, % F-score, % FPR, %
RF KA 23 94.48 92.62 91.02 0.54
RF Gradient Boosting Decision Tree (GBDT) 23 93.09 91.21 89.37 2.84
RF Decision Tree (DT) 23 92.65 91.78 90.01 3.31
RF Support Vector Machine (SVM) 23 90.14 91.46 89.44 1.47
Tree KA 23 93.34 91.90 89.99 0.64
Fisher KA 10 93.25 91.72 89.79 1.91
ReliefF KA 8 91.55 90.96 89.07 8.35
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based AdaBoost for flow classification is another aspect that we
consider. We define the convergence of the algorithm as the effect
of the increase in iterations on the detection accuracy. In the
process of traffic classification in our system, we use a hybrid
clustering-based AdaBoost by combining the k-means++ and
AdaBoost to detect anomaly network flows. Since the
implementation of k-means++ only makes a preliminary
preparation for the process of classification, we mainly consider
the convergence of AdaBoost in our paper. In [29], it has been
proved that AdaBoost iteratively converges to the minimum of the
exponential loss. It shows upper and lower bounds as well as their
conjectured tighter bounds for convergence rates to a given target
loss, which are achieved by some finite combination of the weak
hypotheses. So, we have been no longer discussing the
convergence problem with a limit to the length of our paper.

Since the final result of AdaBoost is the weighted combination
of each basic classifier, it is crucial to figure out the effect of the
number of basic classifiers on the classification accuracy. We try to
prune the basic parameter of AdaBoost by building the ensemble
classifier with different numbers of basic classifiers. It means the
number of trees (NTs) built as basic classifiers. NTs and the error
rate of classification using the training and testing dataset,
respectively, are plotted in Fig. 6. It is shown that the error rate
decreases as NTs become larger. It indicates that the larger number
of weak classifiers can compensate for each other and achieve a
better total performance. After NTs increase to a certain limit, the
error rate remains almost unchanged. As we know that the more
numbers of trees it needs to build, the longer of time the algorithm
needs to classify flows. We strike a balance between the detection
performance and time consumption and choose NT = 200 as the
desirable value in the following evaluation experiments. 

5.3.3 Evaluations on the detection ability of the proposed
system using different datasets: In Table 6, we compare the
evolution performance of our system by applying the testing
dataset of the KDD99 dataset and NSL-KDD dataset. We can see
from the table that the classification accuracy for rare classes (U2R
and R2L attacks) of NSL-KDD are significantly higher than the
original KDD99, whereas slightly lower in the majority classes
(DoS and probe attacks). We summarise that detection capability of
the system can be evaluated in a more comprehensive way when
using NSL-KDD dataset without biased to redundant records. 

We observe the detection performance of our system using
different distributions of datasets and the result is demonstrated in
Fig. 7. In a real network, some intrusions generate more
connections than others which lead to an extremely unbalanced
dataset for classification. Thus, we resolve the problem through
downsampling the majority of intrusions (normal and DoS) as well
as oversampling the minority intrusions (U2R and R2L). In
Table 7, it gives an overview of percentages of samples classified
into five classes and the distributions show extreme variations
between the two datasets. We make a comparison of detection rate
between the ordinary dataset and the balanced dataset using the
same default parameters by splitting 40% of the complete set as
testing data. It is apparent that the sampling technique improving
the detection accuracy of minority intrusions dramatically while
maintains a reasonable detection rate of the majority ones. The
result indicates that pre-processing the input data into uniform
distribution upgrades the detection of minority intrusions which
elevates the overall performance of our system. 

Finally, we evaluate the detection ability for unknown attacks
through cross-validation (CV) [30] by splitting 90% of the dataset
for training while the rest 10% for testing in Table 8. It is clearly
depicted that classifications with CV behave well by significantly
boosting the accuracy of detecting U2R and R2L attacks. The rates
of other categories are gently promoted as well. To our knowledge,
the four main types of attacks mentioned above are subdivided into

Fig. 4  Overhead produced by different systems with different numbers of
flows

 

Table 5 Performance comparison of different systems
Proposed system and related works Accuracy, % FPR, %
our system 92.62 0.54
[20] 92.16 0.52
[28] 91.68 0.71
[27] 90.82 0.82
[16] 88.64 1.45

 

Fig. 5  Processing times of different systems
 

Fig. 6  Error rate with the different NTs
 

Table 6 Accuracy (%) on the NSL-KDD dataset compared
with the original KDD99 dataset
Classes of flows KDD99 dataset NSL-KDD dataset
normal 99.44 98.89
probe 91.79 89.61
Dos 99.95 92.56
U2R 64.29 80.21
R2L 80.68 86.43
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39 small classes, 17 of which only appear in the model we come up
with testing data. So, it shows that our proposed system lacks a
generalisation ability to detect various attacks without previous
training. 

6 Conclusion
This paper presents an intelligent IDS based on software-defined
5G architecture using machine learning algorithms. It is
implemented under software-defined environment which facilitates
status monitoring as well as traffic capturing under a global view. It
integrates and coordinates security function modules under
centralised management and applies machine learning algorithms
to detect intrusions intelligently. We use RF to select a subset of
typical traffic features and classify network flows by combining k-
means++ and AdaBoost algorithms. Evaluation results validate the
optimality of our proposed system in achieving higher accuracy
and lower overhead without much time consumption. The
experiments also reveal that the system improves its detection
ability under training well with the balanced dataset. The
combination of selected algorithms is also proved to be effective
compared with existing solutions.

In the future, we intend to find the intrinsic relations between
features as well as classifiers and adaptively choose the best
combination of learning approaches. Besides, we will spare no
efforts to further find the suitable way to select the regular time
interval for packet collection and inspection.
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