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Abstract—Recently, source localization is becoming a major
research focus. Majority of the existing studies focus on the
design of received signal strength (RSS) based localization
methods. However, when in the face of the complicated envi-
ronments with severe fading, RSS based localization methods
achieve relatively inferior accuracy performance, compared with
fingerprinting-based localization methods. Nevertheless, tradi-
tional fingerprinting-based localization methods subject to the
condition that the source transmit power is known, which
cannot be directly used in passive localization cases where
the sensing nodes do not have the prior information on the
source. Additionally, the received sensing data may contain errors
and then affect the location precision due to various abnormal
conditions such as device failure and malicious cases. In this
paper, we propose a novel robust relative fingerprinting-based
passive localization algorithm via a data cleansing approach.
First, we figure out the fingerprint correlations property and
introduce a new relative fingerprint framework. The key idea is
that by exploring the correlations between the source fingerprint
and the reference fingerprint database, the correction factors
can be achieved to apply the fingerprint idea into the passive
localization case. Second, we formulate a generalized modeling
of the abnormal data in localization problem and propose a
data cleansing approach which utilizes the sparse property of
the abnormal data. Based on this, the negative influence of
abnormal data can be further eliminated. Third, considering
the sparse property of the source position, we use the sparse
Bayesian learning in the matching process for the purpose of
achieving more precise estimated source position. Simulation
results demonstrate that the proposed algorithm achieves higher
accuracy performance in passive source localization in terms of
eliminating the abnormal data impairment.

Index Terms—Passive localization, robust localization, finger-
print, correlation, data cleansing.

I. INTRODUCTION

A. Background and Motivation

NOWADAYS, source localization has received increasing
research attention, as position information is important
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for a variety of applications, such as emergency services, mo-
bile communications, public safety and intelligent transporta-
tion, to mention just a few [1]–[4]. In many practical cases,
while the source devices are requested for their positions, it is
not possible to have these sources taken part in the localization
process. Thus, the passive or non-cooperative localization
issue, of which the basic idea is that the sensing nodes do
not have the prior information of the source transmit power,
is becoming a great interest. On one hand, many devices are
designed simply, which do not support the processing module,
or have limited use due to the constrained battery. On the other
hand, some devices do not wish to be discovered, e.g., the
tapping phone in the conference room, the pseudo station in
the building, and the interference source in a military fight,
etc. Moreover, due to the varying topography, the wireless
radio channel is susceptible to noise, interference, and other
channel impediments. Also, as the society develops, various
installations have been established, which made the surface
surroundings becoming much more complicated. In addition,
as a large part of people’s daily lives is room based, such as
schools, office buildings, shopping malls, or residential area,
the communications are suffering great shadowing by kinds of
obstacles such as walls and floors [5], [6]. All these complex
environments make the localization analysis more difficult and
unquestionably decrease the precision of location estimation.

Furthermore, since the sensing devices are getting increas-
ingly integrated and portable, all kinds of devices could be
used as the sensing nodes, which are an important component
of the passive source localization. Hence, various unexpected
events such as node equipment failures and malicious be-
haviors may inevitably occur during the whole localization
process, which can be serious threats of degradation in the
estimation accuracy [7]. The above observations motivate us
in this paper to investigate the interesting but critical issue of
robust passive source localization.

B. Related Work

Recently, various passive localization techniques have been
investigated which based on the received data measurement in
[8]–[18]. Due to the low cost and easy deployment charac-
teristics, energy based techniques have been widely employed
such as received signal strength (RSS) [9]–[12] and received
signal strength difference (RSSD) based approaches [13].
However, the localization performance may suffer degradation
since these methods are affected by the environments more
heavily. For another, the authors in [14]–[18] proposed some
classical techniques that rely on distance estimation using
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time of arrival (TOA), time difference of arrival (TDOA),
or improved methods. Nevertheless, these methods require
precise timing and synchronization, which necessitate the
use of very accurate clocks, thus increasing the cost and
complexity of implementation. Notably, one severe problem
of all the above techniques is that they rely heavily on the
signal propagation model. The localization performance may
suffers once the real received signal deviates from the assumed
signal model too much, which is a general phenomenon in the
real world [19], [20].

Fingerprinting-based localization method, which leverages a
data mining/learning mechanism to determine user locations,
can reduce the dependence of signal model and provide
relatively higher accuracy in localization performance (see,
e.g., [21]–[27]). Generally, the fingerprinting-based method
contains two parts: a training phase and a matching phase. In
the training phase, a reference node is used in each reference
position to transmit signals and several sensing nodes receive
and record the signals. When all reference points have finished
collecting data, the reference fingerprint database is created.
Then, in the matching phase, a learning mechanism is used
to find the best matched item of the source fingerprint in the
fingerprint database, which is considered to be the estimated
source position. Due to the preconstruction of the reference
fingerprint database, fingerprinting is well recognized as an
active localization method as it requires the prior information
on the transmit power of the source. Therefore, in passive
localization conditions where the source emitting power is
unknown, the fingerprinting method cannot be directly applied.

Furthermore, due to the abnormal circumstances, errors may
occur in the sensing data for various forms. Hence, how
to formulate the errors and take measures to eliminate their
impairments is becoming an important research point in recent
years. In [28]–[30], the non-line-of-sight (NLOS) condition is
considered in the TOA based localization problems, several
convex relaxation methods are proposed to mitigate the effect
of NLOS errors on the localization performance. Considering
the environment changes case, the authors in [31] performed
experiments to quantify how changes in an environment affect
the localization accuracy. Then, a correlation method for
selecting channels is presented to decrease the localization
error rate. The authors in [32] and [33] considered the het-
erogeneous device influence and tried to solve it using a
fingerprint that is related to the signal strength differences.
Specifically, [32] explored the use of normalized logarithmic
signal strength ratios. Furthermore, [33] provided a theoretical
analysis of the signal strength difference method and designed
a series of substantial tests under different conditions. The
results showed that both proposed methods in [32] and [33]
can mitigate the effects of the hardware variations and raise the
localization performance effectively. Notably, these methods
were designed for cooperative or active source localization
and can not be applied in passive localization cases directly.
Also, considering the mismatch problem between training
and runtime fingerprints, the authors in [34] proposed a
multi-channel fingerprint-based indoor localization system that
employs modern mathematical concepts based on the sparse
representations and matrix completion theories. In [35], we

developed a robust RSS-based localization algorithm to filter
out the abnormal data and eliminate the errors’ influence
effectively. Nevertheless, to the best knowledge of the authors,
the impact of abnormal data in fingerprinting-based passive
source localization has not been reported.

C. Contributions
In this paper, we develop a robust passive source localization

method to address the issues mentioned above. Aimed at the
complicated environments in which traditional passive local-
ization methods may suffer from great precision degradation,
this paper figures out the fingerprint correlations property
and then develops a new relative fingerprinting-based passive
localization framework. The key idea is that by exploring the
correlations between the source fingerprint and the fingerprint
database, the new corrected factors can be achieved to facilitate
the design of fingerprint method in passive localization. Mean-
while, considering the existence of either accidental equip-
ment failures or random malicious behaviors, every sensing
node could sporadically and randomly produce abnormal data,
which results in great degradation of the estimation accuracy.
To overcome the problem, this paper utilizes a data cleansing
scheme to effectively filter out the abnormal data, which will
eliminate the impairment it brings. Furthermore, considering
the sparse property of the source distribution, we propose a
sparse Bayesian learning approach. This method enables the
estimated source position to be obtained by finding out the best
sparse vector from a large dictionary of potential candidates.
Specifically, the contributions of this paper are summarized as
follows:

• A framework of relative fingerprinting-based passive
localization is proposed. By analyzing the correlation-
s between the source fingerprint vector and the col-
lected reference fingerprint database, the application of
the fingerprinting method into the passive localization
case is firstly introduced. Different from the tradition-
al fingerprint-based localization which directly uses the
fingerprint database, the proposed algorithm introduces
corrected factors which are calculated in the relative
fingerprint constructing phase and further transforms the
original one into a new relative fingerprint database. The
transformation will apply the fingerprint in the passive
localization for better performance.

• A generalized modeling of abnormal data in localization
problem is formulated, which can involve the combined
effects of unexpected equipment failures and malicious
data falsifications. To solve that, a data cleansing scheme
is proposed which exploits the sparsity of the abnormal
data. After the process, the new source data matrix that
cleansed out abnormal data component is achieved.

• A sparse Bayesian learning method is developed in the
matching phase to achieve accurate location estimation.
The method can precisely estimate the source position
by solving an under-determined system of equations. The
in-depth simulations are presented to demonstrate the ef-
fectiveness of the proposed robust algorithm, which show
a higher accuracy performance in passive localization of
the proposed algorithm over the state-of-the-art schemes.
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TABLE I
KEY NOTATIONS AND SYMBOLS USED IN THIS PAPER.

Symbol Definition

M Number of the sensing nodes

N Number of the grid points

H Number of the detected channels

Pt Transmit power of the source

P r,S
SN,i Received power of i−th sensing node from the unknown source

P r
i,j,k Received power of i−th sensing node at j−th point in k−th channel from a source

nr
i,j,k Noise of i−th sensing node at j−th point in k−th channel from a source

ari,j,k Abnormal data of i−th sensing node at j−th point in k−th channel from a source

P r,R
p,i Received power of i−th sensing node from the reference node

F⃗S Fingerprint vector of the unknown source

F⃗k
R,p Fingerprint vector of the reference node at p−th point in k−th channel

F⃗CH,k Fingerprint vector of received the signal in k−th channel

F⃗o,k Fingerprint vector of the received pure signal in k−th channel

W⃗k Fingerprint vector of the received noise in k−th channel

A⃗k Fingerprint vector of the abnormal data in k−th channel

Y Coarse data matrix of the received signal of all channels

X Pure data matrix of the received signal of all channels

W Noise data matrix of the received signal of all channels

A Abnormal data matrix of the received signal of all channels

Dk Reference fingerprint database of the k−th channel

SN Number of the occupied channel by the unknown source

Dnew New relative fingerprint database

C⃗p Corrected vector at p−th grid point

The rest of this paper is structured as follows. In Section II,
we describe the system model of our work, which contains the
tradition signal model and the general abnormal data model. In
Section III, we figure out the fingerprint correlations property,
which will play a pivotal role in the proposed algorithm.
Then, the robust relative fingerprinting-based passive local-
ization algorithm via a data cleansing approach is proposed
in Section IV. The simulation results are provided to show
the effectiveness of the new proposed algorithm in Section V.
Finally, we summarize the main conclusions in Section VI. In
addition, the corresponding Cramer-Rao lower bound of the
abnormal data model is derived In Appendix A. Furthermore,
to facilitate the reading, the key notations and symbols used
in this paper are given in Table 1.

II. SYSTEM MODEL

A. Traditional Signal Model

We consider a scenario that there are M sensing nodes with
known positions and a target source with unknown position.
The sensing nodes can be gridding or randomly distributed
while the unknown source obeys random distribution. The
purpose of the passive localization is to estimate the source
position by the sensing nodes through the received power
of the source, without the prior information of the source
transmit power. Under the radio propagation path loss model,

the average received power Pi of the i th sensing node can be
expressed as [13]

Pi (dBm)− Pt (dBm) = K − 10γlog10

(
di
d0

)
+ ni, (1)

where Pt is the source transmit power; K is a constant value
for the reference distance d0; γ is the pass loss exponent; di
is the true distance between the source and the i−th sensing
node; ni is the measurement noise which is assumed to be
Gaussian distribution ni ∼ N

(
0, σ2

i

)
.

B. General Abnormal Data Model

We know that for the passive source localization problem,
all the signal property information of the source is unknown.
Besides the unknown source transmit power, we should firstly
track the source signal among the monitored channels and
find out which channel is occupied by the source. Benefiting
from the multi-channel detecting techniques such as wideband
spectrum sensing process [37]–[39], we are able to record the
sensing data of every detected channel for each sensing node.
In this paper, we suppose that totally H channels are detected
and the unknown source is occupying any one of them. Hence
that the M sensing nodes have to detected all the H channels
and recorded the sensing data. The sensing data matrix can be
modeled as that in Fig. 1.
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Fig. 1. Abnormal data model of the passive source localization

However, due to the unexpected equipment failures and
malicious behaviors, every sensing node could randomly and
sporadically contribute abnormal data. Meanwhile, when com-
ing up rugged environments, the transmit signal may suffer
from severe loss, which could also cause the sensing data error.

Considering the abnormal data, the signal power P r
i,k which

based on Eq. (1) can be given as

P r
i,k = Pt +K − 10γlog10

[
d
d0

]
+ ni,k + ai,k

= P o
i,k + ni,k + ai,k

, (2)

where P r
i,k is the data that recorded by the i−th sensing node

of the signal in k−th channel. P o
i,k = Pt+K−10γlog10

[
d
d0

]
is the original signal data which based on the signal propaga-
tion model, without considering the influence of noise and
abnormal data. ni,k is the noise component which follows
zero-mean Gaussian distribution. ai,k denotes the abnormal
data component. When ai,k = 0, the sensing data returns to
the normal data.

Due to the various unexpected events (e.g., node equipment
failures, malicious data falsification), the abnormal data com-
ponent can be also in various forms, such as a constant or a
random value. The abnormal data models are often seen in the
papers which solve security problems, especially in the spec-
trum sensing field (see, e.g. , “Always Right/Wrong”, “Always
Adverse” and some more comprehensive circumstances [40]–
[43]). In this paper, we do not distinguish concrete data state,
but just formulate a general abnormal data model which only
depicting the data variation. As can be seen, our abnormal
data model is still general enough to cover most of the other
data models and is able to descript other unexpected events.
For detailed, the abnormal data is modeled as an i.i.d. random
process with mean µa and variance σ2

a in this paper [7].
The existence of abnormal data will make the final localiza-

tion process inaccurate. In Fig. 2, we give a simple comparison
of the Cramer-Rao lower bound (CRLB) based on two data
models. It is obviously that the existence of the abnormal
data brings much impairment to the source localization, if
no defense method is used for the abnormal data. Hence,
the design of a robust passive localization to eliminate the
abnormal data influence is very necessary. The detailed CRLB
analysis of the abnormal data model is given in Appendix A.
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Fig. 2. CRLB comparison of the normal and abnormal data cases

III. FINGERPRINT CORRELATION PROPERTY

As that the source transmit power is unknown in passive
localization, it is a big probability case that the transmit power
of the source and the reference node are not the same. After
the fingerprint database is established, even though the source
and the specific point are perfectly matched, the calculation
results may not be the best due to the reason that the received
signal data are not the same. Hence, almost all the searching
algorithms which used in traditional fingerprinting based local-
ization are ineffective for finding the correct position in passive
localization problem. In order to tailor the fingerprint method
into the passive localization case, we will exploit the inner
correlations of the fingerprint to develop a new fingerprinting
based localization framework in the following , which will
be proved to be effective for precise passive source location
estimation.

Suppose that M sensing nodes are deployed for localization
and the test area is divided into N grids. Based on Eq. (2), the
received signal power Pr of the i−th sensing node at j−th
grid point in k−th channel can be written as

P r
i,j,k = Pt +K − 10γlog10

[
d

d0

]
+ nr

i,j,k + ari,j,k. (3)

To facilitate the analysis, we do not specify the chan-
nel information in this part. At any given point p,
the fingerprint of any two sources are measured as
F⃗S1 =

[
P r,S1
p,1 , P r,S1

p,2 , P r,S1
p,3 , · · · , P r,S1

p,M

]
and F⃗S2 =[

P r,S2
p,1 , P r,S2

p,2 , P r,S2
p,3 , · · · , P r,S2

p,M

]
. In fingerprinting based lo-

calization problem, these two sources can be figured as the
unknown source and the reference node, respectively. P r,S1

p,i

and P r,S2
p,i are the received powers of i−th sensing node from

the two sources, respectively. We have the following Theorem
1.

Theorem 1: For a given position p in fingerprinting-based
localization, the fingerprint vectors of any two sources have
an inner correlation whatever there transmit powers are, which
can be written as

F⃗S1 − F⃗S2 = V⃗ + n⃗+ a⃗, (4)
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Fig. 3. Illustration of the relative fingerprint concept. Random choose three grid points and deploy reference node with transmit power Pt,R = 30dBm
to achieve each reference fingerprint. In tradition fingerprint case, the source transmit power is the same with reference node Pt,S = Pt,R = 30dBm; In
relative fingerprint case, the source transmit power is Pt,S = 0dBm.

where F⃗S1 and F⃗S2 are the fingerprints vectors of two different
sources located at the same position p, V⃗ is a constant vector,
n⃗ is the noise vector and a⃗ is the abnormal data vector.

Proof: By subtracting the two vectors and we obtain

F⃗S1 − F⃗S2 =
[
P r,S1
p,1 − P r,S2

p,1 , · · · , P r,S1
p,M − P r,S2

p,M

]
. (5)

Since both two sources are located in the same point, the
distance of them to all the sensing nodes are also precisely the
same. By substituting Eq. (3) into Eq. (5), the formula can be
further written as follows

F⃗S1 − F⃗S2 =
[
P r,S1
p,1 − P r,S2

p,1 , · · · , P r,S1
p,M − P r,S2

p,M

]
=
[
Pt,S1 + nr,S1

p,1 + ar,S1
p,1 − Pt,S2 − nr,S2

p,1 − ar,S2
p,1 , · · · ,

Pt,S1 + nr,S1
p,M + ar,S1

p,M − Pt,S2 − nr,S2
p,M − ar,S2

p,M

]
= [V + np,1 + ap,1, · · · , V + np,M + ap,M ]

= V⃗ + n⃗+ a⃗

,

(6)

where V is a constant that is only associated with the transmit
power of the two unknown sources, i.e., Pt,S1 − Pt,S2. The
RSS measurement noise still performs a Gaussian distribution
of with zero mean, which is np,i = nr,S1

p,i − nr,S2
p,i ∼

N
(
0, σ2

S1,i + σ2
S2,i

)
. While the abnormal data component also

performs a Gaussian distribution, which is ap,i = ar,S1
p,i −

ar,S2
p,i ∼ N

(
µa,1 − µa,2, σ

2
a1,i + σ2

a2,i

)
.

Without considering the influence of abnormal data a⃗, an
insight can be obtained that whenever any two sources are
located in the same point, the fluctuation of their fingerprints
are consistent, which is made out by the received data of all
sensing nodes. The only difference lies in the mean value
difference of the two fingerprints written as V⃗ , which is
depend on the transmit power of two sources. The noise n⃗ is a
zero mean random variable, which can cause slight difference
of the two fingerprints besides the V⃗ . However, the influence
can be ignored from a statistical average view point since the
mean µn,new is zero. Although the abnormal data a⃗ is also a
random variable, the mean µa,new is an unpredictable nonzero
variable, which will affect the difference ruleless besides V⃗ .
Hence, the correlation of the fingerprints cannot be accurately
figured out.

Through the analysis, we observe that the mean value
difference of the two fingerprints can be utilized as a corrected
factor, which may help applying the fingerprint to the passive
localization for better performance. By introducing a relative
fingerprint framework, the fingerprint correlations property
will play a pivotal role in our proposed algorithm. However,
since that the influence of abnormal data cannot be omitted,
a data cleansing approach should be processed first, which is
also a vital step of the proposed robust localization algorithm.

IV. ROBUST RELATIVE FINGERPRINTING-BASED PASSIVE
LOCALIZATION VIA DATA CLEANSING

A. Design Rationale

In order to eliminate the influence that the abnormal data
brings, which is due to the accidental equipment failures or
malicious operations, we exploit the sparse feature of the
abnormal data and develop a data cleansing approach. By
handling the sensing data to remove the negative influence
from abnormal data, the position estimation accuracy can be
largely improved. Meanwhile, since the fingerprint idea cannot
be directly applied to the passive source localization case, we
exploit the inner correlation of the fingerprint and develop
a new relative fingerprinting based localization framework.
Based on Theorem 1, any two fingerprints of two sources
have inner correlation once they are in the same place. The
expression lies in that these two fingerprints have relative
consistency while the main difference is a constant vector.
If the constant vector can be calculated and removed, then the
two fingerprints will coincide together (the slight difference
of the coincident two fingerprints in Fig. 3 is caused by the
unavoidable noise), which is the core idea of the relative
fingerprint concept. Fig. 3 gives a visualized description of
the relative fingerprint. Hence, the core work of the new
framework is trying to figure out the constant vectors of the
source fingerprint with the fingerprint database and eliminating
them, for which the relative fingerprint database is estab-
lished. For accurate expression, the constant vectors to be
calculated are called the corrected factors in the following
analysis. Benefit from the new framework, the fingerprint can
be effectively used in passive localization for precise source
location estimation. The advantages of the proposed algorithm
also include that the sparse Bayesian learning is used, which
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can utilizing the source sparsity effectively and further raising
the estimated precision.

Considering all the above, we divide the proposed robust
passive localization method into three phases: i) the data
cleansing phase, which receive the source data and perform
cleansing work to get a new source fingerprint; ii) the relative
fingerprint constructing phase, which first provide the refer-
ence fingerprint database and then use the cleansed source fin-
gerprint to transform it into a new relative fingerprint database;
iii) the matching phase, which use the sparse Bayesian learning
to find the best point for the final estimated position. For more
clear and visualized description of the proposed algorithm, the
fundamental procedure of each phases and their relations is
shown in Fig. 4. In the following, we will describe the three
phases sequentially in detail.

B. Data Cleansing Phase

After scanning all the monitored channels, the sensing nodes
recorded all sensing data and form a source data matrix Y,
which can be seen in Fig. 1. As introduced, every node could
randomly and sporadically make errors in sensing data due to
the various unexpected events. In this paper, we consider the
case that the abnormal sensing data are randomly and sparsely
distributed, which is one practical and common assumption
in the literature [7]. Hence, the recorded data is composed of
three types: the original data, the noise and the abnormal data.
Based on Eq. (2), the fingerprint vector of the k− th channel
can be further rewritten as

F⃗CH,k =
[
P r
k,1, P

r
k,2, P

r
k,3, · · · , P r

k,M

]
=
[
P o
k,1, P

o
k,2, P

o
k,3, · · · , P o

k,M

]
+

[nk,1, nk,2, nk,3, · · · , nk,M ] + [ak,1, ak,2, ak,3, · · · , ak,M ]

= F⃗o,k + W⃗k + A⃗k

.

(7)

Hence that, the recorded sensing data matrix Y can be
showed as

Y =
[
F⃗CH,1, F⃗CH,2, F⃗CH,3, · · · , F⃗CH,H

]T
∈ ℜH×M . (8)

To facilitate the following analysis, we translate the data
components into matrix form.

X =
[
F⃗o,1, F⃗o,2, F⃗o,3, · · · , F⃗o,H

]T
∈ ℜH×M , (9)

W =
[
W⃗1, W⃗2, W⃗3, · · · , W⃗H

]T
∈ ℜH×M , (10)

A =
[
A⃗1, A⃗2, A⃗3, · · · , A⃗H

]T
∈ ℜH×M . (11)

Then, we can express the sensing data in the new matrix
form as

Y = X+W +A, (12)

where Y is the recorded coarse sensing data of all detected
channels by the sensing nodes. X+W is the normal sensing

data component which contains the original data matrix X and
the noise matrix W. A is the abnormal data component.

In this paper, we consider the case where only a source is
occupying one of the H channels, which indicates that the
matrix X is low-rank. Also, considering that the accidental
equipment failures or random malicious behaviors, nonzero
entries in the matrix A are randomly and sparsely distributed.
Therefore, the core work of the data cleansing process is to
recover the sensing data from the influence of abnormal data,
by exploiting the low-rank property of X and the sparsity
property of A.

Based on the observations, a principal component pursuit
problem is formulated as follows

min
X,A

rank (X) + λ ⟨A⟩

s.t. X+W +A = Y
, (13)

where rank (·) and ⟨·⟩ stand for the rank of a matrix and
the number of nonzero entries in a matrix respectively. λ is
denoted as a controlling parameter. However, the optimization
goal is known as intractable which needs further process. In
order to tackle this problem, we introduce the nuclear norm
∥X∥∗ =

∑
i υi (X) as the convex surrogate of rank (X) by

calculating the sum of the singular values, together with the
l1 − norm ∥A∥1 =

∑
h,m |ah,m| as the convex surrogate

of ⟨A⟩ [36]. Hence, Eq. (13) can be rewritten to a tractable
convex optimization problem

min
X,A

∥X∥∗ + λ∥A∥1

s.t. ∥Y −X−A∥ ≤ ε
, (14)

where ε is a noise related parameter. By denoting µ as a tuning
value, Eq. (14) can be further written into following form

min
X,A

∥X∥∗ + λ∥A∥1 + µ∥Y −X−A∥2. (15)

Since that Eq. (15) is a convex optimization problem, an
alternating direction method of multipliers (ADMM) algorithm
is used for solving due to its higher accuracy with fewer
iterations. We operate the ADMM method on the augmented
Lagrangian form as follows

L (X,A, µ) = ∥X∥∗ + λ∥A∥1 + µ∥Y −X−A∥2. (16)

By operating an iterative procedure until reaches a stop
condition, we will finally obtain the optimization variables X̃
and Ã.

Since that we do not analyze the source detection problem
in this paper, an assumption is considered that the unknown
source is accurately detected among all the channels and the
serial number of the occupied channel is SN . Based on the
cleansed sensing data matrix X̃ and the abnormal data matrix
Ã, the cleansed source fingerprint vector is written as

F⃗S =
[
P r,S
SN,1, P

r,S
SN,2, P

r,S
SN,3, · · · , P

r,S
SN,M

]
. (17)
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C. Relative Fingerprint Constructing Phase

Under the fingerprinting based localization paradigm, one
core task is to build the fingerprint database. However, the
reference fingerprint database constituted by collected data
cannot be directly used for passive localization, something
change must be done in order to apply the fingerprint to the
passive localization case. During this phase, we use the refer-
ence fingerprint database and the cleansed source fingerprint
to calculate the corrected factors, by which the fingerprint
database can be transformed into a new form, which is proved
to be an effective way for the application of fingerprint in
passive localization.

First, we randomly choose a known source as the reference
node, without considering the specific transmit power. For
channel k, an RSS vector data received by all the sensing
nodes from the reference node is recorded in each grid point
among the measurement area. Specifically, the fingerprint
vector of a fixed grid point p can be written as

F⃗ k
R,p =

[
P r,R
p,1 , P r,R

p,2 , P r,R
p,3 , · · · , P r,R

p,M

]
. (18)

After all the grids finished RSS vector data collection, the
fingerprint database of channel k is

Dk =
[
F⃗ k
R,1, F⃗

k
R,2, F⃗

k
R,3, · · · , F⃗ k

R,N

]T
. (19)

Thus, the reference fingerprint database is comprised of all
the channels’ fingerprint database, which can be showed as
{D1,D2, · · · ,DH}.

When the channel that the source occupied is detected,
the corresponding channel’s fingerprint database is picked up
for further process. For simplification, we write the specific
fingerprint database as

DSN =
[
F⃗R,1, F⃗R,2, F⃗R,3, · · · , F⃗R,N

]T
. (20)

After achieving the cleansed source fingerprint vector F⃗S

as shown in Eq. (19), the mean value of the F⃗S is calculated

E
(
F⃗S

)
=

(
M∑
i=1

P r,S
i

)/
M. (21)

Similarly, for each grid point p, the fingerprint vector F⃗R,p

of the fingerprint database DSN can be find in Eq. (7). Hence,
the mean value of specific reference fingerprint vector F⃗R,p

can be calculated as

E
(
F⃗R,p

)
=

(
M∑
i=1

P r,R
p,i

)/
M. (22)

Here, we define Cp as the correction factor of the grid point
p.

Cp = E
(
F⃗S

)
− E

(
F⃗R,p

)
. (23)

As is known that, for grid point p, we have C1
p = C2

p =
· · · = CM

p . Hence, the corrected value vector of point p is

C⃗p =
[
C1

p , C
2
p , · · ·CM

p

]
. (24)

After calculations of the correction value in all grid points,
we get a new relative fingerprint database when compared to
the original one, which is written as

Dnew =
[
F⃗R,1 − C⃗1, F⃗R,2 − C⃗2, F⃗R,3 − C⃗3, · · · , F⃗R,N − C⃗N

]T
=
[
F⃗ ′
R,1, F⃗

′
R,2, F⃗

′
R,3, · · · , F⃗ ′

R,N

]T .

(25)

D. Matching Phase

When the relative fingerprint database and the fingerprint
vector of the unknown source are achieved, then it can be
a keyword to search the fingerprint database for position
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estimation. The best matched grid point is viewed as the
estimated position of the source. To find the best match,
many matching metrics can be used in matching phase. In
this paper, we introduce a new robust passive localization
scheme that consider the sparse property of the unknown
source and utilizes this information during the estimation of
the source position. A critical insight regarding the position
of the unknown source is that the associated location vector is
inherently sparse when considering a discrete physical space.

Here we consider the sparse vector u⃗ as the unknown source
position information, in which a non-zero component at p
position indicates the position of unknown source at p − th
grid point. For instance, the vector of Eq. (26) means that the
unknown source is located at the first grid point.

u⃗ = [1, 0, 0, · · · , 0]T . (26)

Since the new fingerprint database Dnew is calculated in
processing phase, the final data matching can be expressed as
follows

F⃗S = Dnew
T u⃗+ Υ⃗, (27)

where F⃗S is the recorded fingerprint vector of the unknown
source and the Υ⃗ is the noise vector.

As can be seen in Eq. (27), the passive source localization
problem then turns to be an accurate detection issue of the
non-zero coefficient of the sparse vector u⃗.

Here we employ a sparse Bayesian learning with relevance
vector machine (RVM) approach for the final location estima-
tion. The Bayesian framework associated with RVM, given
a dictionary-dependent sparsity penalty, presents invariance
properties leading to accurate sparse signal estimation, es-
pecially for structured dictionaries [34]. Given the cleansed
source fingerprint vector F⃗S and the new relative fingerprint
database Dnew, the main goal is to formulate a posterior prob-
ability distribution for u⃗. The adopted probabilistic framework
introduces a prior over the sparse vector by N independent,
hyperparameters b⃗ = [b1, b2, b3, · · · , bN ]

T . Each one of the
hyperparameters is associated with corresponding position in
the area of interest that mitigate the prior and individually
controlling the strength of the prior over its associated weight.

Sparse Bayesian learning defines a zero-mean Gaussian
prior with precision bi on each element of the sparse vector
u⃗:

p
(
u⃗
∣∣∣⃗b) =

N∏
i=1

N
(
ui

∣∣0, b−1
i

)
= (2π)

−N
2

N∏
i=1

b
1
2
i exp

(
− biu

2
i

2

) . (28)

Meanwhile, the noise vector of the Sparse Bayesian frame-
work is modelled probabilistically as independent zero-mean
Gaussian with variance σ2.

p
(
Υ⃗
)
=

N∏
i=1

N
(
Υi

∣∣0, σ2
)
. (29)

Based on Eq. (27), the source fingerprint vector F⃗S is
modeled as

p
(
F⃗S |u⃗, σ2

)
=
(
2πσ2

)−M
2 exp

−

∥∥∥F⃗S −Dnewu⃗
∥∥∥2

2σ2

 .

(30)

By combining the likelihood and prior within Bayes’ rule,
the posterior probability for the sparse vector u⃗ is defined as:

p
(
u⃗
∣∣∣F⃗S , b⃗, σ

2
)
=

p(F⃗S |u⃗, σ2)p(u⃗|⃗b )
p(F⃗S |⃗b, σ2)

= (2π)
−N

2 |Σ|−
1
2 exp

(
−1

2 (u⃗− µ⃗)
T
Σ−1 (u⃗− µ⃗)

) , (31)

where | · | is the determinant of a matrix. The mean µ⃗ and
the covariance matrix Σ are given as

Σ =
(
V + σ−2Dnew

TDnew

)−1

, (32)

µ⃗ = σ−2ΣDnew
TF⃗S , (33)

and V = diag (b1, b2, b3, · · · , bN ). Hence, finding the sparse
vector u⃗ then translates in estimating the unknown variables
µ⃗ and Σ, which is final fall over the estimation of the
hyperparameters b⃗ of the sparse vector u⃗.

The sparse Bayesian learning is formulated as the local
maximisation with respect to the hyperparameters b⃗ of the
marginal likelihood. It is an iterative process where each
iteration estimates b⃗ and σ2 that maximize the marginal
likelihood.

ℓ
(⃗
b
)
= log p

(
F⃗S

∣∣∣⃗b, σ2
)

= − 1
2

[
M log 2π + log |C|+ F⃗T

S C−1F⃗S

] , (34)

with C = σ2I + DnewV
−1Dnew

T. After a number of
iterations, a hyperparameter bop remains relatively small in-
dicating the non-zero components of the sparse vector u⃗op.
Consequently, the estimated location of the unknown source is
the grid point op that corresponds to the maximum component
of u⃗op.

η = argmax
(⃗b,σ2)

u⃗ = argmax
(⃗b,σ2)

p
(
F⃗S

∣∣∣u⃗, b⃗, σ2
)
. (35)

E. Summary of the Robust Passive Localization Algorithm

Based on the above analysis, the overall procedure of
the robust passive localization algorithm is summarized in
Algorithm 1. Focusing on the abnormal data problem, the
proposed algorithm performs a data cleansing approach on the
received source sensing data, which can effectively eliminate
the influence that the abnormal data brings. Focusing on the
complicated environment problem, the proposed algorithm in-
troduces a new relative fingerprinting based framework, which
can transform the fingerprint database into a new form and
realize effective application of the fingerprint to the passive
localization. At last, the sparse Bayesian learning method is
used in matching phase, which can use the sparse property
of the source and raise the precision of the final position
estimation effectively.
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Algorithm 1: Robust Relative Fingerprinting-Based Pas-

sive Localization via Data Cleansing

1 Parameter setting: Grid points M ; Sensing nodes N ;
Detected channels H; Iterations NUM .

2 Input: Reference fingerprint database
{D1,D2, · · · ,DH}; Sensing data matrix of the channels
Y.

3 Phase I: Data Cleansing Phase
4 for i = 1, 2, · · · , NUM do
5 Do the singular value decomposition (svd) process

(P,S,Q) = svd
(
Y − Ã(i)

)
;

6 Update the cleansed data matrix
X̃(i+1) = PΨµ (S)Q;

7 Update the abnormal data matrix

Ã(i+1) = Ψλµ

(
Y − X̃(i+1)

)
;

8 return X̃, Ã; //Cleansed data matrix and abnormal data
matrix

9 return F⃗S , SN ; //Cleansed source fingerprint vector and
corresponding serial number

10 Phase II: Relative Fingerprint Constructing Phase
11 for p = 1, 2, · · · ,M do
12 Calculate the mean value of F⃗S as E

(
F⃗S

)
;

13 Calculate the mean value of the pth grid fingerprint

F⃗R,p of DSN as E
(
F⃗R,p

)
;

14 Calculate the corrected factor

Cp = E
(
F⃗S

)
− E

(
F⃗R,p

)
and expand to the vector

C⃗p;

15 Calculate the new fingerprint database Dnew;
16 return Dnew; //Corrected reference fingerprint database
17 Phase III: Matching Phase
18 Determine prior distribution on each point p

(
u⃗
∣∣∣⃗b);

19 Estimate the hyperparameters b⃗ via maximizing the

marginal likelihood ℓ
(⃗
b
)

;
20 Estimate the posterior probability of the sparse vector

u⃗ as p
(
u⃗
∣∣∣F⃗S , b⃗, σ

2
)

;
21 Estimate the final source location s⃗ via argmax u⃗;
22 Output: s⃗.

F. Complexity Analysis

In this section, the computational complexity of the pro-
posed algorithm is analyzed. As can be seen in Algorithm
1, there are mainly three phases. Phase II only contains the
basic mathematical operations, which holds the lowest com-
putational cost. The main work of Phase I is computing SVD,
which requires to compute those singular vectors of Y−Ã(i) .
However, since that the matrix X is low-rank, an approximate
SVD can be used to avoid a significant computation task, by
which computing several largest nonzero singular values in
front. The dominant computational cost lies in Phase III, which
is proportional to the number of partitioned grids. The reason

is twofold. On one hand, more grid numbers will increase the
iterations for finding the best u⃗ in line 20. On the other hand,
large grid numbers also increase the computational cost of the
marginal likelihood ℓ

(⃗
b
)

in line 19 for each iteration, which
is directly related with the fingerprint database.

V. PERFORMANCE EVALUATION

A. Basic Simulation Setup

In the following simulations, a fundamental scene of a
20m × 20m square measured area is considered, and eight
sensing nodes are deployed at the known coordinates (0,0),
(0,10), (0,20), (10,0), (10,20), (20,0), (20,10), (20,20) in meter-
s. Also, the measured area is divided into 20×20 grids, hence
that each grid is a 1m × 1m square. The unknown source is
distributed randomly in the measured area. Meanwhile, since
that the occupied channel of the source is unknown, we have
to scan much more channels to find which channel is used.
We assume that there are 10 channels to be detected and the
source is occupying any one of them. For signal propagation
modeling, the source transmit power is Pt,S = 0dBm and the
reference node transmit power is set to be Pt,R = 30dBm. The
pass loss exponent is γ = 2. The AWGN performs a Gaussian
distribution with zero mean and variance σ = 1. For the
abnormal state modeling, since the abnormal data is an i.i.d.
random variable, we set the mean value of the abnormal data
to be 10 and called abnormal data strength in the following
analysis. The number of abnormal data referred to the specific
source vector is 1, and is randomly distributed among all the
eight data of the sensing nodes. We will detailed illustration
of the abnormal data strength and the abnormal data number
in the corresponding analysis.

B. Effectiveness Analysis of The Relative Fingerprint Frame-
work

This subsection compares the effectiveness of the relative
fingerprint framework among several circumstances, which is
shown in Fig. 5. In this part, the cumulative density function
(CDF) is used to show the performance analysis of each
method. We randomly choose 100 points in the measured
area as the source positions to be located. For each point, the
distance between the real position and the estimated position
is calculated, which called error distance. The CDF figure
can give a direct outlook of the satisfied point rate under the
specific error distance conditions. Also, several localization
schemes under different configurations are used to demonstrate
the effectiveness of the relative fingerprint framework.

• A baseline scheme called “No Framework + KNN” (N-F-
K scheme), which means that the localization method on-
ly uses the K-nearest neighbor (KNN) matching method
for the final position estimation.

• A baseline scheme called “No Framework + Sparse
Learning” (N-F-SL scheme), which means that the lo-
calization method only uses the sparse Bayesian learning
for the final position estimation.

• A baseline scheme called “Framework + KNN” (F-K
scheme), which means that the localization method uses
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Fig. 5. Effect of the relative fingerprint framework in two scenes.

the relative fingerprint framework and the KNN matching
method for the final position estimation.

• A baseline scheme called “Framework + Sparse Learn-
ing” (F-SL scheme), which means that the localization
method uses the relative fingerprint framework and the
sparse Bayesian learning for the final position estimation.

Figure 5 gives two sub-graphs which show the performance
comparison of the four schemes in both the normal scene and
the abnormal scene. The normal scene means that the received
sensing data from the source are without any "polluted", while
the abnormal scene means that the sensing data contains
abnormal data. As can be seen from the two figures, the F-SL
scheme and the F-K scheme which use the relative fingerprint
framework can reach great localization performance when
compared to the N-F-SL scheme and the N-F-K scheme.
For the reason, the relative fingerprint framework can elim-
inate the average difference between the source fingerprint
and the reference fingerprint and then transform the passive
localization problem to an ordinary active case. Hence, the
relative fingerprint framework can help improving the passive
localization performance greatly. On the other hand, when
comparing the F-SL scheme with the F-K scheme, it is clearly
that the proposed sparse Bayesian learning is more effective
than the widely used KNN method in matching phase. In the
following simulations, more detailed analysis will be given
to show the effectiveness of our proposed algorithm which
uses both the relative fingerprint framework and the sparse
Bayesian learning method.

C. Effectiveness Analysis of The Proposed Passive Localiza-
tion Method

In this part, we use the root mean square error (RMSE)
criterion to measure the position estimation performance,
which can clearly present the performance variation under
different parameters constraint. The RMSE is written as

RMSE =

√√√√ 1

K

K∑
i=1

∥s̃i − si∥2. (36)

where˜⃗s is the estimated position and the s⃗ is the real position
of the unknown source. K is the simulation times.

Also, in order to show the effectiveness of the proposed
robust localization algorithm, several localization schemes are
also performed for comparison. Since that the above subsec-
tion has analyzed the importance of the relative fingerprint
framework, in the following we configure all the schemes with
the specific framework and mainly analyze the effectiveness
of the data cleansing work and the sparse Bayesian learning
process. The schemes are listed as follows.

• A baseline scheme called “Abnormal" (AB scheme),
which means that the localization scheme directly use the
sensing data without any pretreatment and then perform
the position estimation by the sparse Bayesian learning
method.

• A baseline scheme called “Abnormal + KNN Cleansing”
(AB-K-C scheme), which means that the localization
scheme uses the original abnormal data without any
pretreatment and then uses the data cleansing method
together with the KNN matching method for the final
position estimation.

• A baseline scheme called “Abnormal + Proposed Cleans-
ing” (AB-P-C scheme), which means that the localization
scheme uses the original abnormal data without any
pretreatment and then uses the data cleansing method
together with the sparse Bayesian learning method for
the final position estimation.

• A baseline scheme called “Abnormal + Perfect Cleans-
ing” (AB-PER scheme), which means that the localization
scheme uses the sensing data which are assumed to be
perfected cleansed and then uses the sparse Bayesian
learning method for the matching process.

• A baseline scheme called “Normal” (NL scheme), which
means that the localization scheme use the sensing data
that do not have any abnormal data and then perform
the position estimation by the sparse Bayesian learning
method.

The source localization performance of the aforementioned
schemes is compared for different abnormal data strength in
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Fig. 6. RMSE of the source localization versus abnormal strength for various
schemes.

Fig. 6. Since the abnormal data is modeled as a Gaussian
random variable, the real strength of the abnormal data cannot
be precisely figured out. Hence, we use the mean value of the
abnormal data as the abnormal data strength for the analysis.
As is shown in the figure, the RMSE of the AB scheme is
increasing along with the larger of the abnormal data strength.
The reason is that the abnormal data with larger strength will
affect the localization precision more heavily. However, by
using the data cleansing method to filtering the abnormal data,
the three schemes (AB-K-C scheme, AB-P-C scheme and AB-
PER scheme) all follow a monotonically decreasing trend as
the abnormal data strength gets larger. This is because that
the larger strength can make it more easily to find out the
abnormal data, hence the data cleansing work are more precise,
which put a positive effect on the final source localization. On
the other hand, when the strength is very weak, the influence
caused by the sensing data error cleansed may be more serious
than the abnormal data itself brings. This is the reason why the
AB scheme can performs better than the AB-K-C scheme on
the condition that the abnormal data strength is weak enough.
The AB-PER scheme holds an assumption that the abnormal
data are perfectly cleansed, which can get a better performance
when compared to the AB-K-C scheme and AB-P-C scheme,
whose sensing data after cleansing method may still exist
errors. When compared the AB-K-C scheme with the AB-P-C
scheme, it is clear that our proposed sparse Bayesian learning
method in matching phase can reach a higher precision of the
final estimation.

The effect of the abnormal data number on the RMSE
of the source position estimation is given in Fig. 7. In our
work, only the abnormal data in the source fingerprint F⃗S

may affect the final position estimation. Hence, the abnormal
data number in Fig. 7 means the number of abnormal data in
the source fingerprint. In this simulation, we use 12 sensing
nodes to perform the localization process and the abnormal
data number set from 1to 4. For example, when the abnormal
data number is 2, that is to say any two sensing nodes out
of the whole 12 nodes are recording a wrong data, thus the
final received source fingerprint contains 10 normal data and
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Fig. 7. RMSE of the source localization versus number of abnormal data
for various schemes.

2 abnormal data. From Fig. 7 we can see that as the number
of abnormal data increases, the position RMSE of the AB-
K-C scheme and the AB-P-C scheme are all goes larger,
which means a decrease on the performance of localization.
The reason can be seen that too many abnormal data will
definitely raise the difficulties of the data cleansing process,
and the precision of the cleansed data will be reduced greatly.
The more the abnormal data exists, the lower precision the
data cleansing work gets, and finally the worse performance
of the source localization achieves. Meanwhile, although the
AB-PER scheme can cleanse the abnormal data perfectly,
too many abnormal data will leave less normal data to be
used for localization, which can also decrease the final source
localization performance. Also, we should note that when the
number of abnormal data goes very large, the efficiency of data
cleansing process gets very worse, together with the fewer
existed data to be used for final localization, the negative
influence they brings has already surpass the effect of the
abnormal data (For example, when the number is 4, the RMSE
of the AB scheme is smaller than that of the AB-K-C scheme
and the AB-P-C scheme). An interesting phenomenon in Fig.
7 appears that when the number of abnormal data grows, the
position RMSE of the AB scheme turns to be slightly smaller.
A rational explanation may be that too much numbers can
eliminate the sparse property of abnormal data, which will
weaken the bad influence of the abnormal data.

Fig. 8 shows the The effect of sensing node number on the
RMSE of the source position estimation for various schemes.
From the figure we can find that as the number of sensing node
increase, all the schemes performs a monotonically decreasing
trend, which means that the localization performance are
getting improved gradually. It is because that increasing the
sensing nodes will enlarge the sensing data matrix, which
can weaken the influence of the noise and further raise the
localization precision. Especially, enlarging the sensing data
matrix can help improving the efficiency of data cleansing
method, which has stronger effect on the KNN matching
method otherwise. Thus, when the number of sensing node
gets smaller, the difference of the AB-K-C scheme, AB-P-C
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Fig. 8. RMSE of the source localization versus number of sensing nodes
for various schemes.

scheme and the AB-PER scheme becomes more significantly.

VI. CONCLUSION

In this paper, we propose a novel robust relative
fingerprinting-based passive localization algorithm via a data
cleansing approach. Firstly, a new relative fingerprint frame-
work is introduced. The key idea is that by exploring the
correlations between the source fingerprint and the fingerprint
database, the fingerprint idea can be applied into the passive
localization case appropriately. Then, a generalized modeling
of the abnormal data in localization problem is formulated.
Based on this, a data cleansing approach is proposed to
eliminate the abnormal data impairment. Finally, the sparse
Bayesian learning is used for the purpose of achieving more
precise estimated source position. Simulation results demon-
strate that the proposed algorithm achieves a higher accuracy
performance in passive localization in terms of eliminating the
abnormal data impairment.

APPENDIX A
CRAMER-RAO LOWER BOUND ANALYSIS

In this part, we analyze the CRLB of the localization esti-
mation based on the abnormal data model. The CRLB defines
a lower bound on the variance of the unbiased estimator and
is employed as a benchmark for evaluating the performance of
the estimation. As is analyzed before, the abnormal data can be
in various forms and is modeled as a Gaussian random variable
in this paper. Hence, the abnormal data occurred in the i−th
sensing node is ai ∼ N

(
µa,i, σ

2
a,i

)
. The Fisher Information

Matrix (FIM) of the measurement model is written as

cov
(
δ⃗
)
≥ J−1, (37)

where δ⃗ is the unknown vector to be estimated, which is
written as δ⃗ = [sx, sy]. cov () is the covariance matrix of the
unknown vector δ⃗ and J is the FIM.

From the abnormal data model in Eq. (2), the joint proba-
bility density function of the measurement data can be written

as

g
(
P⃗
∣∣∣δ⃗) = (2π)

−M
2 |C|−

1
2 exp

(
−1

2

(
P⃗ − µ⃗

)T
C−1

(
P⃗ − µ⃗

))
,

(38)
where P⃗ = [P r

1 , P
r
1 , · · · , P r

M ] is the measured signal strength,
C is the covariance matrix and µ⃗ is the mean of the measure-
ment vector P⃗ .

Since that the measurement data are independently recorded
by the sensing nodes, C is a diagonal matrix and the element
of the matrix is

Cii = σ2
W + σ2

a,i. i = 1, 2, · · · ,M (39)

The element in the vector µ⃗ is

µi = P o
i + µa,i. i = 1, 2, · · ·M (40)

Furthermore, we transform the joint pdf into the logarithm
form

ln
(
g
(
P⃗
∣∣∣δ⃗)) = KC − 1

2

(
P⃗ − µ⃗

)T
C−1

(
P⃗ − µ⃗

)
, (41)

where KC = − 1
2 ln

[
(2π)

M |C|
]

is a constant that does not

depend on the unknown value δ⃗.
Thus, the FIM is calculated as follows

J
(
δ⃗
)
= −E

∂2 ln g
(
P⃗
∣∣∣δ⃗)

∂δ⃗ ∂δ⃗T

 =

(
∂µ⃗

∂δ⃗

)T

C−1

(
∂µ⃗

∂δ⃗

)
.

(42)
For detailed,

∂µ⃗

∂δ⃗
=

[(
∂µ1

∂sx

∂µ1

∂sy

)
, · · ·

(
∂µi

∂sx

∂µi

∂sy

)
, · · ·

(
∂µM

∂sx

∂µM

∂sy

)]T
,

(43)

∂µi

∂sx
=

10γ

ln 10

tix − sx
d2i

, (44)

∂µi

∂sy
=

10γ

ln 10

tiy − sy
d2i

, (45)

where [tix tiy] is the coordinate of the i−th sensing node and
di is the distance of the source from i−th sensing node.

As can be seen in the above, CRLB is actually the inverse
of the FIM. Once the FIM J is figured out, the CRLB of the
unknown vector δ⃗ can be calculated as J−1.
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