
Received October 31, 2018, accepted November 8, 2018, date of publication November 19, 2018,
date of current version December 27, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2881964

Deep Reinforcement Learning for Resource
Management in Network Slicing
RONGPENG LI 1, ZHIFENG ZHAO 1, QI SUN2, CHIH-LIN I2, CHENYANG YANG 3,
XIANFU CHEN 4, (Member, IEEE), MINJIAN ZHAO1, AND HONGGANG ZHANG 1
1College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
2Green Communication Research Center, China Mobile Research Institute, Beijing 100053, China
3School of Electronics and Information Engineering, Beihang University, Beijing 100191, China
4VTT Technical Research Centre of Finland, FI-90571 Oulu, Finland

Corresponding author: Zhifeng Zhao (zhaozf@zju.edu.cn)

This work was supported in part by the National Key R&D Program of China under Grant 2018YFB0803702, in part by the National
Natural Science Foundation of China under Grant 61701439 and Grant 61731002, and in part by the Zhejiang Key Research and
Development Plan under Grant 2018C03056.

ABSTRACT Network slicing is born as an emerging business to operators by allowing them to sell the
customized slices to various tenants at different prices. In order to provide better-performing and cost-
efficient services, network slicing involves challenging technical issues and urgently looks forward to
intelligent innovations to make the resource management consistent with users’ activities per slice. In that
regard, deep reinforcement learning (DRL), which focuses on how to interact with the environment by
trying alternative actions and reinforcing the tendency actions producing more rewarding consequences,
is assumed to be a promising solution. In this paper, after briefly reviewing the fundamental concepts of DRL,
we investigate the application of DRL in solving some typical resource management for network slicing
scenarios, which include radio resource slicing and priority-based core network slicing, and demonstrate the
advantage of DRL over several competing schemes through extensive simulations. Finally, we also discuss
the possible challenges to apply DRL in network slicing from a general perspective.

INDEX TERMS Deep reinforcement learning, network slicing, neural networks, Q-learning, resource
management.

I. INTRODUCTION
The fifth-generation cellular networks (5G) is assumed to be
the key infrastructure provider for the next decade, by means
of profound changes in both radio technologies and net-
work architecture design [1]–[4]. Besides the pure perfor-
mance metrics like rate, reliability and allowed connections,
the scope of 5G also incorporates the transformation of the
mobile network ecosystem and accommodates heterogeneous
services using one infrastructure. In order to achieve such a
goal, 5G will fully glean the recent advances in the network
virtualization and programmability [1], [2], and provide a
novel technique named network slicing [1], [5]–[7]. Network
slicing tries to get rid of the current, relatively monolithic
architecture like the forth-generation cellular networks (4G)
and slice thewhole network into different parts, each of which
is tailed to meet specific service requirement. Therefore, net-
work slicing is born as an emerging business to operators and
allows them to sell the customized network slices to various

tenants at different prices. In aword, network slicing could act
as a service (NSaaS) [5]. NSaaS is quite similar to the mature
business ‘‘infrastructure as a service (IaaS)’’, the benefit of
which service providers like Amazon and Microsoft have
happily enjoyed for a while. However, in order to provide
better-performing and cost-efficient services, network slicing
involves more challenging technical issues even for the real-
time resource management on existing slices, since (a) for
radio access networks, spectrum is a scarce resource and it
is meaningful to guarantee the spectrum efficiency (SE) [8],
while for core networks, virtualized functionalities are lim-
ited by computing resources; (b) the service level agreements
(SLAs) with slice tenants usually impose stringent require-
ments on quality of experience (QoE) perceived by users [9];
and (c) the actual demand of each slice heavily depends
on the request patterns of mobile users. Hence, in the 5G
era, it is critical to investigate how to intelligently respond
to the dynamics of service request from mobile users [7],

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

74429

https://orcid.org/0000-0003-4297-5060
https://orcid.org/0000-0002-5479-7890
https://orcid.org/0000-0003-0058-0765
https://orcid.org/0000-0002-5485-4955
https://orcid.org/0000-0003-1492-1364

R. Li et al.: DRL for Resource Management in Network Slicing

so as to obtain satisfactory QoE in each slice at the cost of
acceptable spectrum or computing resources [4]. There has
been several works towards the resource management for the
network slicing, particularly in specific scenarios like edge
computing [10] and Internet of things [11]. However, it is still
very appealing to discuss a approach in generalized scenarios.
In that regard, [12] proposes to adopt genetic algorithm as
an evolutionary means for inter-slice resource management.
However, [12] does not reflect the explicit relationship that
one slice might require more resources due to its more strin-
gent SLA.

On the other hand, partially inspired by the psychology of
human learning, the learning agent in reinforcement learn-
ing (RL) algorithm focuses on how to interact with the envi-
ronment (represented by states) by trying alternative actions
and reinforcing the tendency actions producing more reward-
ing consequences [13]. Besides, reinforcement learning also
embraces the theory of optimal control and adopts some ideas
like value functions and dynamic programming. However,
reinforcement learning faces some difficulties in dealing with
large state space, since it is challenging to traverse every
state and obtain a value function or model for every station-
action pair in a direct and explicit manner. Hence, benefiting
from the advances in graphics processing units (GPUs) and
the less concern for the computing power, some researchers
propose to sample only a fraction of states and further apply
neural networks (NN) to train a sufficiently accurate value
function or model. Following this idea, Google DeepMind
has pioneered to combine NN with one typical RL algo-
rithm (i.e., Q-Learning), and proposed one deep reinforce-
ment learning (DRL) algorithm with enough performance
stabilities [14], [15].

The well-known success of AlphaGo [14] and following
exciting results to apply DRL to solve resource allocation
issues in some specific fields like power control [16], green
communications [17], cloud radio access networks [18],
mobile edge computing and caching [19]–[21], have aroused
some research interest to apply DRL to the field of network
slicing. However, given the challenging technical issues in
the resource management on existing slices, it is critical to
carefully investigate the performance of applying DRL in the
following aspects:
• The basic concern is whether or not the application of
DRL is feasible. More specifically, does DRL produce
satisfactory QoE results while consuming acceptable
network resources (e.g., spectrum)?

• The research community has proposed some schemes
for the resource management in network slicing scenar-
ios. For example, the resource management could be
conducted by either following a meticulously designed
prediction algorithm, or equally dividing the available
resource into each slice. The former implies one reason-
able option, while the latter saves a lot of computational
cost. Hence, a comparison between DRL and these inter-
esting schemes is also necessary.

In this paper, we strive to address these issues.

The remainder of the paper is organized as follows.
Section II starts with the fundamentals of RL and talks about
the motivation to evolve towards DRL from RL. As the main
part of the paper, Section III addresses two resource manage-
ment issues in network slicing and highlights the advantages
of DRL by extensive simulation analyses. Section IV con-
cludes the paper and points out some research directions to
apply DRL in a general manner.

II. FROM REINFORCEMENT LEARNING TO DEEP
REINFORCEMENT LEARNING
In this section, we give a brief introduction over RL or more
specifically Q-Learning, and then talk about the motivation
to evolve from Q-Learning to Deep Q-Learning (DQL).

A. REINFORCEMENT LEARNING
RL learns how to interact with the environment to achieve
maximum cumulative return (or average return), and has been
successfully applied in the fields like robot control, self driv-
ing, and chess playing for years. Mathematically, RL follows
the typical concept of Markov decision process (MDP), while
the MDP is a generalized framework for modeling decision-
making problems in cases where the result is partially random
and affected by the applied decision. An MDP can be formu-
lated by a 5-tuple as M = 〈S,A,P(s′|s, a),R, γ 〉, where S
and A denote a finite state space and action set, respectively.
P(s′|s, a) indicates the probability that the action a ∈ A under
state s ∈ S at slot t leads to state s′ ∈ S at slot t + 1.
R(s, a) is an immediate reward after performing the action
a under state s, while γ ∈ [0, 1] is a discount factor to
reflect the diminishing importance of current reward on future
ones. Usually, the goal of MDP is to find a policy a = π (s)
that determines the selected action a under state s, so as to
maximize the value function, which is typically defined as
the expected discounted cumulative reward by the Bellman
equation:

V π (ŝ) = Eπ

[
∞∑
k=0

γ kR(s(k), π(s(k)))|s(0) = ŝ)

]

= Eπ

[
R(ŝ, π(ŝ)))+ γ

∑
s′∈S

P(s′|ŝ, π(ŝ))V π (s′)

]
. (1)

Dynamic programming could be exploited to solve the
Bellman equation when the state transition probability
P(s′|s, a) is known a priori with no random factors. But
inspired by both control theory and behaviorist psychology,
RL aims to obtain the optimal policy π∗ under circumstances
with unknown and partially random dynamics. Since RL does
not have explicit knowledge over whether it has come close to
its goal, it needs the balance between exploring new potential
actions and exploiting the already learnt experience. So far,
there has been some classical RL algorithms likeQ-learning,
actor-critic method, SARSA, TD(λ), etc [13]. Given by the
detailed methodologies and practical application scenarios,
we can classify these RL algorithms according to different
criteria:

74430 VOLUME 6, 2018

R. Li et al.: DRL for Resource Management in Network Slicing

• Model-based versus Model-free: Model-based algo-
rithms imply the agent tries to learn the model of how
the environment works from its observations and then
plan a solution using that model. Once the agent gains
adequately accurate model, it can use a planning algo-
rithm with its learned model to find a policy. Model-
free algorithms means the agent does not directly learn
how to model the environment. Instead, like the classical
example ofQ-learning, the agent estimates the Q-values
(or roughly the value function) of each state-action pair
and derives the optimal policy by choosing the action
yielding the largest Q-value in the current state. Dif-
ferent from the model-based algorithm, the well-learnt
model-free algorithm likeQ-learning cannot predict the
next state and value before taking the action.

• Monte-Carlo Update versus Temporal-Difference
Update: Generally, the value function update could be
conducted in two ways, that is, the Monte-Carlo update
and the temporal-difference (TD) update. A Monte-
Carlo update means the agent updates its estima-
tion for a state-action pair by calculating the mean
return from a collection of episodes. A TD update
approximates the estimation by comparing estimates
at two consecutive episodes. For example, Q-learning
updates its Q-value by the TD update as Q(s, a) ←
Q(s, a)+α(R(s, a)+γ maxa′ Q(s′, a′)−Q(s, a)), where
α is the learning rate. Specifically, the term R(s, a) +
γ maxa′ Q(s′, a′)−Q(s, a) is also named as the TD error,
since it captures the difference between the current (sam-
pled) estimate R(s, a) + γ maxa′ Q(s′, a′) and previous
one Q(s, a).

• On-policy versus Off-policy: The value function update
is also coupled with the executed update policy. Before
updating the value function, the agent also needs to
sample and learn the environment by performing some
non-optimal policy. If the update policy is irrelevant to
the sampling policy, the agent is called to perform an
off-policy update. Taking the example of Q-learning,
this off-policy agent updates the Q-value by choosing
the action corresponding to the best Q-value, while
it could learn the environment by adopting sampling
policies like ε-greedy or Boltzmann distribution to bal-
ance the ‘‘exploration and exploitation’’ problem [13].
The Q-learning proves to converge regardless of the
chosen sampling policy. On the contrary, the SARSA
agent is on-policy, since it updates the value function by
Q(s, a) ← Q(s, a) + α(R(s, a) + γQ(s′, a′) − Q(s, a))
where a′ and a need to be chosen according to the same
policy.

B. FROM Q-LEARNING TO DEEP Q-LEARNING
We first summarize the details of Q-Learning. Gener-
ally speaking, Q-Learning belongs to a model-free, TD
update, off-policy RL algorithm, and consists of three major
steps:

1) The agent chooses an action a under state s accord-
ing to some policy like ε-greedy. Here, the ε-greedy
policy means the agents chooses the action with the
largest Q-value Q(s, a) with a probability of ε, and
equally chooses the other actions with a probabil-
ity of 1−ε

|A| , where |A| denotes the size of the action
space.

2) The agent learns the reward R(s, a) from the environ-
ment, and the state transitions to the next state s′.

3) The agent updates the Q-value function in a TDmanner
as Q(s, a)← Q(s, a)+ α(R(s, a)+ γ maxa′ Q(s′, a′)−
Q(s, a)).

Classical RL algorithms usually rely on two different ways
(i.e., explicit table or function approximation) to store the
estimated value functions. For the table storage, RL algo-
rithm uses an array or hash table to store the learnt results
for each state-action pair. For large state space, it not only
requires intensive storage, but also is unable to quickly
transverse the complete the state-action pair. Due to the
curse of dimensionality, function approximation sounds more
appealing.

The most straightforward way for function approximation
is a linear approach. Taking the example of Q-learning, the
Q-value function could be approximated by a linear combina-
tion of n orthogonal bases ψ(s, a) = {ψ1(s, a), · · ·ψn(s, a)},
that is, Q(s, a) = θ0 · 1+ θ1 ·ψ1(s, a)+ · · · + θn ·ψn(s, a) =
θTψ(s, a), where θ0 is a biased term with 1 absorbed into
the ψ for simplicity of representation and θ is a vector
with the dimension of n. The function approximation in the
Q-learning means that Q(s, a) = θTψ(s, a) should
be as close as the learnt ‘‘target’’ value Q+(s, a) =∑

s P(s
′
|s, a)

[
R(s, a)+ γ maxa′ Q+(s′, a′)

]
over all the state-

action pairs. Since it is infeasible to transverse all the
state-action pairs, the ‘‘target’’ value could be approximated
based on the minibatch samples and Q+(s, a) ≈ R(s, a) +
γ maxa′ Q+(s′, a′). In order to make Q(s, a) = θTψ(s, a)
approach the ‘‘target’’ value Q+(s, a), the objective function
could be defined as

L(θ) =
1
2

(
Q+(s, a)− Q(s, a)

)2
=

1
2

(
Q+(s, a)− θTψ(s, a)

)2
. (2)

The parameter θ minimizing L(θ) could be achieved by a
gradient-based approach as

θ (i+1) ← θ (i) − α∇L(θ (i))

= θ (i) − α
(
Q+(s, a)− θTψ(s, a)

)
ψ(s, a). (3)

For a large state-action space, the function approximation
reduces the number of unknown parameters to a vector with
dimension n and the related gradient method further solves
the parameter approximation in a computationally efficient
manner.

Apparently, the linear function approximation could not
accurately model the estimated value function. Hence,
researchers have proposed to replace the approximation

VOLUME 6, 2018 74431

R. Li et al.: DRL for Resource Management in Network Slicing

FIGURE 1. An illustration of deep Q-learning.

Q(s, a; θ) by some non-linear means. In that regard, NN is
skilled in approximating non-linear functions [22]. There-
fore, in AlphaGo [14], [15], NN has been exploited and the
loss function can be re-defined as L(θ) = 1

2

(
Q+(s, a) −

Q(s, a; θ)
)2. Besides, deep neural network has made novel

progress in the following aspects:

• Experience Replay [15]: The agent stores the past expe-
rience (i.e., the tuple et = 〈st , at , s′t ,R(st , at)〉) at
episode t into a dataset Dt = (e1, · · · , et) and uni-
formly selects some (mini-batch) items from the dataset
to update the Q-value neural network Q(s, a; θ).

• Network Cloning: The agent uses a separate network Q̂
to guide how to select an action a in state s, and the
network Q̂ is replaced by Q every C episodes.

Simulation results demonstrate that this network cloning
enhances the learning stability [15].

Both experience replay and network cloning motivate to
choose the off-policy Q-learning, since the sampling policy
is only contingent on previously trained Q-value NN and the
updating policy, which relies on the information from the
new episodes, is irrespective of the sampling policy. On the
other hand, the DQL agent could collect the information (i.e.,
state-action-reward pair) and train its policy in background.
Also, the learned policy is stored in the neural networks
and can be conveniently transferred among similar scenarios.
In other words, the DQL could efficiently perform and timely
make the resource allocation decision according to its already
learned policy.

74432 VOLUME 6, 2018

R. Li et al.: DRL for Resource Management in Network Slicing

Algorithm 1 The General Steps of Deep Reinforcement
Learning
input: An evaluation network Q with weights θ ; a target

network Q̂ with weights θ̂ = θ .
initialize: A replay memory dataset D with size of N ; the

episode index t = 0.
1: repeat
2: At episode t , the DQL agent observes the state st .
3: The agent chooses action at with a probability

ε or selects at satisfying at = argmaxa Q(st , a; θ).
4: After executing the action at , the agent observes the

reward R(st , at) and a new state st+1 = s′t for the
system.

5: The agent stores the episode experience et =

〈st , at , s′t ,R(st , at)〉 into D.
6: The agent samples a minibatch of experiences from D

and sets Q+(st , at) = R(st , at) + γ maxa′ Q+(s′t , a
′).

In cases where episode terminates at t , Q+(st , at) =
R(st , at).

7: The agent updates the weights θ for the evaluation
network by a gradient-based approach in (3).

8: The agent clones the evaluation networkQ to the target
network Q̂ every C episodes by assigning the weights
θ̂ as θ̂ = θ .

9: The episode index is updated by t ← t + 1.
10: until A predefined stopping condition (e.g., the gap

between θ and θ̂ , the episode length, etc) is satisfied.

Finally, we illustrate the deep Q-learning in Fig. 1 and
summarize the general steps in Algorithm 1.

III. RESOURCE MANAGEMENT FOR NETWORK SLICING
Resource management is a permanent topic during the evo-
lution of wireless communication. Intuitively, resource man-
agement for network slicing can be considered from several
different perspectives.

• Radio Resource and Virtualized Network Functions: As
depicted in Fig. 2, resource management for network
slicing involves both radio access part and core network
part with slightly different optimization goals. Due to the
limited spectrum resource, the resource management for
the radio access puts considerable efforts in allocating
resource blocks (RBs) to one slice, so as to maintain
acceptable SE while trying to bring appealing rate and
small delay. The widely adopted optical transmission
in core networks has shifted the optimization of core
network to design common or dedicated virtualized
network functions (VNFs), so as to appropriately for-
ward the packets from one specific slice with minimal
scheduling delay. By balancing the relative importance
of resource utilization (e.g, SE) and QoE satisfaction
ratio, the resource management problem could be for-
mulated as R = ζ ·SE+β ·QoE, where ζ and β denotes
the importance of SE and QoE.

• Equal or Prioritized Scheduling: As part of the con-
trol plane, IETF [23] has defined the common control

network function (CCNF) to all or several slices. The
CCNF includes the access and mobility management
function (AMF) as well as the network slice selection
function (NSSF), which is in charge of selecting core
network slice instances. Hence, besides equally treating
flows from different slices, the CCNF might differen-
tiate flows. For example, flows from ultra-reliable low-
latency communications (URLLC) service can be sched-
uled and provisioned in higher priority, so as to experi-
ence as little latency as possible. In this case, in order
to balance the resource utilization (RU) and the waiting
time (WT) of flows, the objective goal could be similarly
written as a weighted summation of RU and WT.

Based on the aforementioned discussions, we can safely
reach a conclusion that, the objective of resourcemanagement
for network slicing should take account of several variables
and a weighted summation of these variables can be consid-
ered as the reward for the learning agent.

A. RADIO RESOURCE SLICING
In this part, we address how to apply DRL for radio
resource slicing.Mathematically, given a list of existing slices
1, · · · ,N sharing the aggregated bandwidth W and having
fluctuating demands d = (d1, · · · , dN), DQL tries to give
a bandwidth sharing solution w = (w1, · · · ,wN), so as
to maximize the long-term reward expectation E{R(w, d)}
where the notation E(·) denotes to take the expectation of the
argument, that is,

argwmaxE{R(w, d)}
= argwmaxE

{
ζ · SE(w, d)+ β · QoE(w, d)

}
s.t.: w = (w1, · · · ,wN)

w1 + · · · + wN = W

d = (d1, · · · , dN)

di ∼ Certain Traffic Model, ∀i ∈ [1, · · · ,N]

(4)

The key challenge to solve (4) lies in the volatile demand
variations without having known a priori due to the traffic
model. Hence, DQL is exactly the matching solution to solve
the problem.

We evaluate the performance to adopt DQL to solve (4)
by simulating a scenario containing one single BS with
three types of services (i.e., VoIP, video, URLLC). There
exist 100 registered subscribers randomly located within a
40 meter-radius circle surrounding the BS. These subscribers
generate service models summarized in Table 1(b). VoIP and
video services exactly take the parameter settings of VoLTE
and video streaming models, while URLLC service takes the
parameter settings of FTP 2 model [24]. It can be observed
from Table 1(b), URLLC has less frequent packets compared
with the others, while VoLTE requires the smallest bandwidth
for its packets.

We consider DQL by using the mapping in Table 1(a)
to optimize the weighted summation of system SE and

VOLUME 6, 2018 74433

R. Li et al.: DRL for Resource Management in Network Slicing

FIGURE 2. An illustration of resource management for network slicing.

slice QoE. Specifically, we perform round-robin scheduling
method within each slice at the granularity of 0.5 ms. In other
words, we sequentially allocate the bandwidth of each slice
to the active users within each slice every 0.5 ms. Besides,
we adjust the bandwidth allocation to each slice per second.
Therefore, the DQL agent updates its Q-value neural network
every second. We compare the simulation results with the
following three methods, so as to explain the importance of
DQL.

• Demand-prediction based method: The method tries
to estimate the possible demand by using long short-
term memory (LSTM) to predict the number of active
users requesting VoIP, video and URLLC respectively.
Afterwards, the bandwidth is allocated by two ways:
(1) DP-No allocates the whole bandwidth to each slice
proportional to the number of predicted packets. In par-
ticular, assuming that the total bandwidth is B and
the predicted number of packets for VoIP, video and
URLLC is NVoIP, NVideo and NURLLC, the allocated
bandwidth to these three slices (i.e., VoIP, video and

URLLC) is B·NVoIP
NVoIP+NVideo+NURLLC

, B·NVideo
NVoIP+NVideo+NURLLC

,
B·NURLLC

NVoIP+NVideo+NURLLC
, respectively. (2) DP-BW performs

the allocation by multiplying the number of predicted
packets by the least required rate in Table 1(b) and then
computing the proportion. In this regard, assuming that
the required rate for the three slices is RVoIP, RVideo
and RURLLC, the allocated bandwidth to VoIP, video and
URLLC is

BNVoIPRVoIP
NVoIPRVoIP + NVideoRVideo + NURLLCRURLLC

,

BNVideoRVideo
NVoIPRVoIP + NVideoRVideo + NURLLCRURLLC

,

BNURLLCRURLLC
NVoIPRVoIP + NVideoRVideo + NURLLCRURLLC

,

respectively. Round-robin is conducted within each
slice.

• Hard slicing: Hard slicing means that each ser-
vice slice is always allocated 1

3 of the whole band-
width, since there exists 3 types of service in

74434 VOLUME 6, 2018

R. Li et al.: DRL for Resource Management in Network Slicing

TABLE 1. A brief summary of key settings in DRL for network slicing simulations.

total. Again, round-robin is conducted within each
slice.

• No slicing: Irrespective of the related SLA, all users are
scheduled equally. Round-robin is conducted within all
users.

We primarily consider the downlink case and adopt system
SE and QoE satisfaction ratio as the evaluation metrics.
In particular, the system SE is computed as the number of
bits transmitted per second per unit bandwidth, where the rate
from the BS to users is derived based on Shannon capac-
ity formula. Therefore, if part of the bandwidth has been
allocated to one slice but the slice has no service activities
at one slot, such part of bandwidth has been wasted, thus
degrading the system SE. QoE satisfaction ratio is obtained
by dividing the number of completely transmitted packets
satisfying rate and latency requirement by the total number
of arrived packets.

Fig. 3 presents the learning process of DQL1 in radio
resource management. In particular, Fig. 3(a)∼3(f) give the
initial performance of DQL when the QoE weight is 5000
and the SE weight is 0.1. Fig. 3(g)∼3(l) provide the per-
formance during the last 50 of 50000 learning updates.
From these sub-figures, it can be observed that DQL could
not well learn the user activities at the very beginning and
the allocated bandwidth fluctuates heavily. But after nearly
50000 updates, DQL has gained better knowledge over user

1Notably, γ is set as 0.9.

activities and yielded a state bandwidth-allocation strategy.
Besides, Fig. 3(m) and Fig. 3(n) show the variations of SE and
QoE along with each learning epoch. From both subfigures,
a larger QoE weight produces policies with superior QoE
performance while bringing certain loss in the system SE
performance.

Fig. 4 provides a detailed performance comparison among
the candidate techniques, where the results for DQL are
obtained after 50000 learning updates. Fig. 4(a)∼4(f) gives
the percentage of total bandwidth allocated to each slice using
the pie charts and highlights the QoE satisfaction ratio by
surrounding text. From Fig. 4(a)∼4(b), a reduction in trans-
mission antennas from 64 to 16, which implies a decrease
in network capability and an increase in potential collisions
across slices, leads to a re-allocation of network bandwidth
inclined to the bandwidth-consuming yet activity-limited
URLLC slice. Also, it can be observed from Fig. 4(f), when
the downlink transmission uses 64 antennas, ‘‘no slicing’’
performs the best, since the transmission capability is suffi-
cient and the scheduling period is 0.5 ms while the bandwidth
allocated to each slice is adjusted per second and thus slower
to catch the demand variations.When the number of downlink
antenna turns to 32, the DQL-driven scheme produces 81%
QoE satisfaction ratio for URLLC, while ‘‘no slicing’’ and
‘‘hard slicing’’ schemes only provision 15% and 41% satis-
fied URLLC packets, respectively. Notably, applying DQL
mainly leads to the QoE gain of URLLC. The reason lies in
that as summarized in Table 1(b), the distribution of packet

VOLUME 6, 2018 74435

R. Li et al.: DRL for Resource Management in Network Slicing

FIGURE 3. The performance of DQL for radio resource slicing w.r.t. the learning steps (QoE Weight = 5000).

size for URLLC follows a truncated lognormal distribution
with the mean value of 2MByte, which is far larger than those
of VoLTE and Video services. Given the larger transmission
volume and strictly lower latency requirement, it is far more
difficult to satisfy the QoE of URLLC. In this case, it is
still satisfactory that DQL outperforms the other competitive
schemes to render higher QoE gain of URLLC at a slight

cost of spectrum efficiency (SE). Meanwhile, Fig. 4(d) and
Fig. 4(e) demonstrate the allocation results for the demand-
prediction based schemes and show significantly inferior
performance, since Fig. 3(a)∼3(c) and Fig. 3(g)∼3(i) show
the number of video packets dominates the transmission and
simple packet-number based prediction could not capture the
complicated relationship between demand and QoE. On the

74436 VOLUME 6, 2018

R. Li et al.: DRL for Resource Management in Network Slicing

FIGURE 4. The performance comparison among different schemes for radio resource slicing. (a) DQL. (b) DQL. (c) DQL. (d) DP-BW.
(e) DP-No. (d) No slicing. (g) System SE. (h) VolTE QoE. (i) Video QoE. (j) URLL QoE.

VOLUME 6, 2018 74437

R. Li et al.: DRL for Resource Management in Network Slicing

FIGURE 5. Performance comparison between DQL-based priority scheduling and no priority scheduling for core network slicing. (a) DQL-based
Prioritied Scheduling. (b) No Priority Scheduling.

other hand, Fig. 4(g) illustrates that this QoE advantage of
DQL comes at the cost of a decrease in SE. Recalling the
definition of the reward in DQL, if we decrease the QoE
weight from 5000 to 1, DQL could learn another bandwidth
allocation policy (in Fig. 4(c)) yielding a larger SE yet a lower
QoE. Fig. 4(g) ∼ 4(j) further summarize the performance
comparison in terms of SE or QoE satisfaction ratios, where
the vertical errorbars show the standard derivation. These
subfigures validate the DQL’s flexibility and advantage in
resource-limited scenarios to ensure the QoE per user.

B. PRIORITY-BASED SCHEDULING IN COMMON VNFS
Section III-A has discussed how to apply DRL in radio
resource slicing. Similarly, if we virtualize the computation
resources as VNFs for each slice, the problem to allocate
computation resources to eachVNF could be solved similar to
the radio resource slicing case. Therefore, in this part, we talk
about another important issue, that is, priority-based core
network slicing for common VNFs. Specifically, we simulate
a scenario where there exists 3 service function chains (SFCs)
possessing the same basic capability but working at the
expenditure of different computation processing units (CPUs)
and yields different provisioning results (e.g., waiting time).
Also, based on the commercial value or related SLA, flows
could be classified into 3 categories (e.g., Category A, B, and
C) with decreasing priority from Category A to Category C,
and a priority-based scheduling rule is defined as that SFC
I prioritizes Category A flows over the others, while SFC II
equally treats Category A and B users but serves Category
C flows with lower priority. SFC III treats all flows equally.
Besides, SFCs process flows with equal priority according

to the arrival time. The eventually utilized CPUs of each
SFC depend on the number of its processed flows. Besides,
SFC I, II and III cost 2, 1.5, and 1 CPU(s), but incur 10, 15,
and 20 ms regardless of the flow size, respectively. Hence,
subject to the limited number of CPUs, flows for each type
will be scheduled to an appropriate SFC, so as to incur
acceptable waiting time. Therefore, the scheduling of flows
shouldmatch and learn the arrival of flows in three categories,
and DQL is considered as a promising solution.

Similarly, it is critical to design an appropriate mapping
of DRL elements to this slicing issue. As Table 1(a) implies,
we use a mapping slightly different from that for radio
resource slicing, so as to manifest the flexibility of DQL.
In particular, we abstract the state of DQL as a summary of
the category and arrival time of last 5 flows and the category
of the newly arrived flow, while the reward is defined as the
weighted summation of processing and queue time of this
flow, where a larger weight in this summation is adopted to
reflect the importance of flows with higher priority. Also,
we first pre-train its NN by emulating some flows with
lognormal distributed inter-arrival time from the three cate-
gories’ users.

We compare the DQL scheme with an intuitive ‘‘no pri-
ority’’ solution, which allocate the flow to the SFC yielding
minimum waiting time. Fig. 5 provides the related perfor-
mance by randomly generating 10000 flows and provisioning
accordingly, where the vertical and horizontal axes represent
the number of utilized CPUs and the waiting time of flows
respectively. Specifically, the bi-dimensional shading color
reflects the number of flows corresponding to the specific
waiting time and utilized CPUs. In particular, the darker color

74438 VOLUME 6, 2018

R. Li et al.: DRL for Resource Management in Network Slicing

implies the larger number. Compared with the ‘‘no priority’’
solution, the DQL-empowered slicing results provision flows
with smaller average waiting time (i.e., 10.5% lower than
‘‘no priority’’) and significantly more sufficient CPU usage
(i.e., 27.9% larger than ‘‘no priority’’). In other words, DQL
could support alternative solutions to exploit the computing
resources and reduce the waiting time by first serving the
users with higher commercial value.

IV. CONCLUSION AND FUTURE DIRECTIONS
From the discussions in this article, we found that match-
ing the allocated resource to slices with the users’ activity
demand will be the most critical challenge for effectively
realizing network slicing, while DRL could be a promising
solution. Starting with the introduction of fundamental con-
cept for DQL, one typical type of DRL, we explained the
working mechanism and application motivation of DQL to
solve this problem. We further demonstrated the advantage
of DQL in managing this demand-aware resource allocation
in two typical slicing scenarios including radio resource slic-
ing and priority-based core network slicing through exten-
sive simulations. Our results showed that compared with
the demand prediction-based and some other intuitive solu-
tions, DQL could implicitly incorporate more deep relation-
ship between demand (i.e., user activities) and supply (i.e.,
resource allocation) in resource-constrained scenarios, and
enhance the effectiveness and agility for network slicing.
Finally, in order to fulfill the application of DQL in a broader
sense, we pointed out some noteworthy issues. We believe
DRL could play a crucial role in network slicing in the future.

However, network slicing involves many aspects and a
successful application of DQL needs some careful consider-
ations: (a) Slice admission control on incoming requests for
new slices: the success of network slicing implies a dynamic
and agile slicemanagement scheme. Therefore, if requests for
new slices emerge, how to apply DQL is also an interesting
problem since the defined state and action space requires to
adapt to the changes in the ‘‘slice’’ space. (b) Abstraction
of states and actions: Section III has provided two ways to
abstract state and action. Both methods sound practical in the
related scenarios and reflect the flexibility of DQL. Hence,
for new scenarios, it becomes an important issue to choose
appropriate abstraction of states and actions, so as to better
model the problem and save the learning cost. Up to date,
it remains an open question on how to give some abstraction
guidelines. (c) Latency and accuracy to retrieve rewards: The
simulations in Section III has assumed the instantaneous and
accurate acquirement of rewards for a state-action pair. But,
such an assumption no longer holds in practical complex
wireless environment, since it takes time for user equipment
to report the information and the network may not success-
fully receive the feedback. Also, similar to the case for state
and action, the abstraction of reward might be difficult and
the defined reward should be as simple as possible. (d) Policy
learning cost: The time-varying nature of wireless channel
and user activities requires a fast policy-learning scheme.

However, the current cost of policy training still lacks the
necessary learning speed. For example, our pre-training for
the priority-based network slicing policy takes two days in
an Intel Core i7-4712MQ processor to converge the Q-value
function. Though GPU could speedup the training process,
the learning cost is still heavy. Therefore, there are still a lot
of interesting questions to be addressed.

ACKNOWLEDGMENT
The authors would like to express their sincere gratitude
to Chen Yu and Yuxiu Hua of Zhejiang University for the
valuable discussions to implement part of simulation codes.

REFERENCES
[1] K. Katsalis, N. Nikaein, E. Schiller, A. Ksentini, and T. Braun, ‘‘Network

slices toward 5G communications: Slicing the LTE network,’’ IEEE Com-
mun. Mag., vol. 55, no. 8, pp. 146–154, Aug. 2017.

[2] F. Z. Yousaf, M. Bredel, S. Schaller, and F. Schneider, ‘‘NFV and
SDN–key technology enablers for 5G networks,’’ IEEE J. Sel. Areas
Commun., vol. 35, no. 11, pp. 2468–2478, Nov. 2017.

[3] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, K. Samdanis, and
X. Costa-Perez, ‘‘Optimising 5G infrastructure markets: The business of
network slicing,’’ inProc. IEEE INFOCOM, Atlanta, GA,USA,May 2017,
pp. 1–9.

[4] R. Li et al., ‘‘Intelligent 5G: When cellular networks meet artificial
intelligence,’’ IEEE Wireless Commun., vol. 24, no. 5, pp. 175–183,
Oct. 2017.

[5] X. Zhou, R. Li, T. Chen, and H. Zhang, ‘‘Network slicing as a ser-
vice: Enabling enterprises’ own software-defined cellular networks,’’ IEEE
Commun. Mag., vol. 54, no. 7, pp. 146–153, Jul. 2016.

[6] X. Li et al., ‘‘Network slicing for 5G: Challenges and opportunities,’’ IEEE
Internet Comput., vol. 21, no. 5, pp. 20–27, Sep. 2017.

[7] S. Vassilaras et al., ‘‘The algorithmic aspects of network slicing,’’ IEEE
Commun. Mag., vol. 55, no. 8, pp. 112–119, Aug. 2017.

[8] N. Zhang, Y.-F. Liu, H. Farmanbar, T.-H. Chang, M. Hong, and
Z.-Q. Luo, ‘‘Network slicing for service-oriented networks under resource
constraints,’’ IEEE J. Sel. Areas Commun., vol. 35, no. 11, pp. 2512–2521,
Nov. 2017.

[9] R. Yu, G. Xue, and X. Zhang, ‘‘QoS-aware and reliable traffic steering
for service function chaining in mobile networks,’’ IEEE J. Sel. Areas
Commun., vol. 35, no. 11, pp. 2522–2531, Nov. 2017.

[10] L. Zanzi, F. Giust, and V. Sciancalepore, ‘‘M2EC: A multi-tenant resource
orchestration in multi-access edge computing systems,’’ in Proc. IEEE
WCNC, Barcelona, Spain, Apr. 2018, pp. 1–6.

[11] V. Sciancalepore, F. Cirillo, and X. Costa-Perez, ‘‘Slice as a service (SlaaS)
optimal IoT slice resources orchestration,’’ in Proc. IEEE GLOBECOM,
Singapore, Dec. 2017, pp. 1–7.

[12] B. Han, J. Lianghai, and H. D. Schotten, ‘‘Slice as an evolutionary ser-
vice: Genetic optimization for inter-slice resource management in 5G
networks,’’ IEEE Access, vol. 6, pp. 33137–33147, 2018.

[13] R. S. Sutton and F. Bach, Reinforcement Learning—An Introduction.
Cambridge, U.K.: Cambridge Univ. Press, 1998. [Online]. Available:
http://webdocs.cs.ualberta.ca/ sutton/book/ebook/

[14] D. Silver et al., ‘‘Mastering the game of Go with deep neural networks
and tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, 2016. [Online].
Available: https://www.nature.com/articles/nature16961

[15] V. Mnih et al., ‘‘Human-level control through deep reinforcement
learning,’’ Nature, vol. 518, pp. 529–533, 2015. [Online]. Available:
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

[16] Y. S. Nasir and D. Guo. (Aug. 2018). ‘‘Deep reinforcement learning for
distributed dynamic power allocation in wireless networks.’’ [Online].
Available: https://arxiv.org/abs/1808.00490

[17] J. Liu, B. Krishnamachari, S. Zhou, and Z. Niu, ‘‘DeepNap: Data-driven
base station sleeping operations through deep reinforcement learning’’
IEEE Internet Things J., to be published.

[18] Z. Xu, Y.Wang, J. Tang, J.Wang, andM.C.Gursoy, ‘‘A deep reinforcement
learning based framework for power-efficient resource allocation in cloud
RANs,’’ in Proc. IEEE ICC, Paris, France, May 2017, pp. 1–6.

VOLUME 6, 2018 74439

R. Li et al.: DRL for Resource Management in Network Slicing

[19] Y. He, F. R. Yu, N. Zhao, V. C. M. Leung, and H. Yin, ‘‘Software-defined
networks with mobile edge computing and caching for smart cities: A big
data deep reinforcement learning approach,’’ IEEECommun.Mag., vol. 55,
no. 12, pp. 31–37, Dec. 2017.

[20] Y. He et al., ‘‘Deep-reinforcement-learning-based optimization for cache-
enabled opportunistic interference alignment wireless networks,’’ IEEE
Trans. Veh. Technol., vol. 66, no. 11, pp. 10433–10445, Nov. 2017.

[21] T. He, N. Zhao, and H. Yin, ‘‘Integrated networking, caching, and com-
puting for connected vehicles: A deep reinforcement learning approach,’’
IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 44–55, Jan. 2018.

[22] K. Hornik, M. Stinchcombe, and H. White, ‘‘Multilayer feedforward
networks are universal approximators,’’ Neural Netw., vol. 2, no. 5,
pp. 359–366, 1989.

[23] X. de Foy and A. Rahman, ‘‘Network slicing—3GPP use case,’’ Network
Working Group, IETF, Tech. Rep., Oct. 2017. Accessed: May 23, 2018.
[Online]. Available: https://tools.ietf.org/id/draft-defoy-netslices-3gpp-
network-slicing-02.html

[24] NGMN. NGMN Radio Access Performance Evaluation Methodology.
Accessed: Jul. 8, 2018. [Online]. Available: https://www.ngmn.org/
publications/all-downloads.html?tx_news_pi1%5Bnews%5D=604&
cHash=94dc3082a0b35f5ec64dbf9e33d2298a

RONGPENG LI received the B.E. degree (Hons.)
from Xidian University, Xi’an, China, in 2010,
and the Ph.D. degree from Zhejiang University,
Hangzhou, China. He was a Research Engineer
with the Wireless Communication Laboratory,
Huawei Technologies Co. Ltd., Shanghai, China,
from 2015 to 2016. He returned to academia
in 2016 as a Post-Doctoral Researcher with the
College of Computer Science and Technologies,
Zhejiang University, which is sponsored by the

National Postdoctoral Program for Innovative Talents. He is currently an
Assistant Professor with the College of Information Science and Electronic
Engineering, Zhejiang University. His research interests include reinforce-
ment learning, data mining, and all broad-sense network problems (e.g.,
resource management and security). He has authored/co-authored several
papers in the related fields. He serves as an Editor ofChina Communications.

ZHIFENG ZHAO received the bachelor’s degree
in computer science, the master’s degree in com-
munication and information system, and the Ph.D.
degree in communication and information system
from the PLA University of Science and Tech-
nology, Nanjing, China, in 1996, 1999, and 2002,
respectively. He is currently an Associate Profes-
sor with the Department of Information Science
and Electronic Engineering, Zhejiang University,
China. From 2002 to 2004, he was a Post-Doctoral

Researcher at the Zhejiang University, where his works were focused on
multimedia next-generation networks and soft-switch technology for energy
efficiency. From 2005 to 2006, he was a Senior Researcher at the PLA
University of Science and Technology, where he performed research and
development on advanced energy-efficient wireless router, ad hoc network
simulator, and cognitivemesh networking test bed. His research area includes
cognitive radio, wireless multi-hop networks (ad hoc, mesh, and WSN),
wireless multimedia networks, and green communications.

QI SUN received the Ph.D. degree in informa-
tion and communication engineering from the Bei-
jing University of Posts and Telecommunications
in 2014. She joined the Green Communication
Research Center, ChinaMobile Research Institute.
Her research interests include 5G communica-
tions, including new waveforms, non-orthogonal
multiple access, massive MIMO, and full duplex.

CHIH-LIN I is the CMCC Chief Scientist of Wire-
less Technologies, China Mobile Research Insti-
tute, launched 5G R&D in 2011, and leads C-
RAN, Green and Soft initiatives. She received the
IEEE Transactions on Communications Stephen
Rice Best Paper Award and the IEEE ComSoc
Industrial Innovation Award. She was on the IEEE
ComSoc Board, the GreenTouch Executive Board,
theWWRFSteeringBoard, theM&CBoardChair,
and theWCNCSCFoundingChair. She is on IEEE

ComSoc SPC and EDB, ETSI/NFV NOC, and Singapore NRF SAB.

CHENYANG YANG received the Ph.D. degree
in electrical engineering from Beihang University
[formerly Beijing University of Aeronautics and
Astronautics (BUAA)], China, in 1997. She has
been a Full Professor with the School of Electron-
ics and Information Engineering, BUAA, since
1999. She has published over 200 papers and filed
over 80 patents in the fields of energy-efficient
transmission, URLLC, wireless local caching,
CoMP, interference management, cognitive radio,

and relay. Her recent research interests include mobile AI, wireless caching,
and URLLC. She was supported by the First Teaching and Research Award
Program for Outstanding Young Teachers of Higher Education Institutions
by the Ministry of Education of China. She was the Chair of the Beijing
Chapter of the IEEE Communications Society from 2008 to 2012 and the
MDC Chair of APB of the IEEE Communications Society from 2011 to
2013. She has served as a TPC member, a TPC co-chair, or track co-chair
for IEEE conferences. She has ever served as an Associate Editor for the
IEEE TRANSANCTIONS ON WIRELESS COMMUNICATION and a Guest Editor for the
IEEE JOURNALOF SELECTED TOPICS IN SIGNAL PROCESSING and the IEEE JOURNAL
OF SELECTED AREAS IN COMMUNICATIONS.

XIANFU CHEN received the Ph.D. degree in
signal and information processing from the
Department of Information Science and Electronic
Engineering, Zhejiang University, Hangzhou,
China, in 2012. He is currently a Senior Scientist
with the VTT Technical Research Centre, Finland
Ltd., Oulu, Finland. His research interests cover
various aspects of wireless communications and
networking, with an emphasis on network virtu-
alization, software-defined radio access networks,

green communications, centralized and decentralized resource allocation,
and the application of machine learning to cognitive radio networks.

74440 VOLUME 6, 2018

R. Li et al.: DRL for Resource Management in Network Slicing

MINJIAN ZHAO received the M.Sc. and Ph.D.
degrees in communication and information sys-
tems from Zhejiang University, Hangzhou, China,
in 2000 and 2003, respectively. He is currently a
Professor with the College of Information Science
and Electronic Engineering, Zhejiang University.
His research interests include modulation theory,
channel estimation and equalization, and signal
processing for wireless communications.

HONGGANG ZHANG is currently a Full Pro-
fessor with the College of Information Science
and Electronic Engineering, Zhejiang University,
Hangzhou, China. He was an Honorary Visiting
Professor with the University of York, U.K., and an
International Chair Professor of Excellence for the
Université Européenne de Bretagne and Supèlec,
France. He has co-authored and edited two books:
Cognitive Communications-Distributed Artificial
Intelligence (DAI), Regulatory Policy and Eco-

nomics, Implementation (John Wiley & Sons) and Green Communica-
tions: Theoretical Fundamentals, Algorithms and Applications (CRC Press),
respectively. He is active in the research on cognitive green communications
and was the leading Guest Editor of the IEEE Communications Magazine
special issues on Green Communications. He served as the Series Editor
for the IEEE Communications Magazine for its Green Communications
and Computing Networks Series from 2015 to 2018 and the Chair of the
Technical Committee on Cognitive Networks of the IEEE Communications
Society from 2011 to 2012. He is an Associate Editor-in-Chief of China
Communications.

VOLUME 6, 2018 74441

	INTRODUCTION
	FROM REINFORCEMENT LEARNING TO DEEP REINFORCEMENT LEARNING
	REINFORCEMENT LEARNING
	FROM Q-LEARNING TO DEEP Q-LEARNING

	RESOURCE MANAGEMENT FOR NETWORK SLICING
	RADIO RESOURCE SLICING
	PRIORITY-BASED SCHEDULING IN COMMON VNFS

	CONCLUSION AND FUTURE DIRECTIONS
	REFERENCES
	Biographies
	RONGPENG LI
	ZHIFENG ZHAO
	QI SUN
	CHIH-LIN I
	CHENYANG YANG
	XIANFU CHEN
	MINJIAN ZHAO
	HONGGANG ZHANG

