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Abstract: Recent years have witnessed the unprecedented surge of mobile traffic and base stations (BSs) deployment, which
poses severe requirement for future communications systems. Understanding the distribution dynamics of traffic and BSs in
time-space domain is of vital importance for better network design and resource management in cellular networks. In this study,
a study on the statistical characteristics of cellular traffic series is carried out and α-stable distribution is verified to be valid for
modelling the traffic series of each BS. On the other hand, inspired by the fact that BSs traffic series are spatially correlated, the
authors study the statistical relationship between the correlation coefficient and the distance between BSs. Moreover, α-stable
model is also suitable to describe the BSs deployment, thus conducing to prove the existence of self-similarity. In addition, both
the traffic time series and the BSs spatial distribution are deeply associated with heterogeneity, so they come up with the
density-based and distance-based methods to quantify their heterogeneous degree.

1 Introduction
The explosive growth of traffic [1] and numerous base stations
(BSs) [2] bring severe challenges to current and future cellular
networks. Thus it is imperative to fully understand the spatial-
temporal characteristics of traffic and the spatial distributed
patterns of BSs.

Prior research works have already presented that a good
knowledge of the temporal-spatial traffic dynamics in cellular
networks can conduce to analyse the potential effect that network
resource usage pattern and subscriber behaviour have on the
network protocol design, spectrum allocation and energy savings
[3–5]. In this respect, understanding how cellular traffic is
distributed temporally and spatially, could be an extremely
beneficial step.

In the past several years, there have been a number of works
that focus on traffic self-similarity nature in Ethernet networks [6]
and ad-hoc networks [7]. Specifically, some traffic models based
on the self-similar stochastic processes such as linear fractional
stable noise process [8], heavy-tailed ON/OFF process [7] and so
on, provided reasonable descriptions of the traffic scenarios.
However, these traffic models seldom take human behaviour
patterns into consideration [9]. Equally important as in wired core
networks, statistical traffic model should also be studied in cellular
networks. From the spatial domain, the authors of [10, 11]
introduced the geospatial dynamics of application usage and the
spatial characteristics of network resource usage, respectively,
whereas the authors of [12, 13], with a statistical significance,
studied the spatial distribution of cellular traffic by using log-
normal distribution. However, temporal-spatial natures of traffic in
cellular networks seldom are researched systematically, and
detailed analysis on the spatial correlation of traffic usage at BSs is
still missing.

For BSs spatial distribution, Poisson point process (PPP) is
widely employed in characterising the stochastic deployment
patterns of BSs [14]. Afterwards, Geyer saturation process [15],
Poisson cluster process [16], and two-tier PPP [17] have been
proposed to reflect the clustering property of BSs which keeps pace
with the social clustering behaviours. Although the aforementioned
models could provide mathematical tractability in the networking
performance evaluation, they failed to reveal the intrinsic heavy-
tailed feature of BSs deployment under the influence of traffic
spatial distribution [3]. Moreover, the ever-increasing deployment
of dense small cells and the multi-tier networking heterogeneity

cause the network topology much more complicated than before
[18]. Therefore, it is necessary to find suitable mathematical
approach to characterise the non-uniformity of the deployed BSs.

In view of the above problems, we conduct comprehensive
analysis on the temporal-spatial distribution characteristics of
traffic and BSs. Concretely, our work has made contributions in the
following three aspects:

• Firstly, we study typical traffic characteristics such as periodicity,
burstiness and self-similarity and propose to take advantage of α-
stable distribution to model the traffic distribution in time domain.
We also examine the spatial correlation of cellular network traffic
between BSs.
• Secondly, we reconfirm that heavy-tailed phenomenon does exist
in the BSs deployment, and BSs deployment can be characterised
by α-stable model, which leads to the self-similarity of BSs spatial
distribution.
• Thirdly, we put forward a density-based measure and a distance-
based measure to evaluate the inhomogeneous degree of BSs
spatial distribution and traffic temporal distribution.

The remaining of this paper is organised as following. In
Section 2, we present a brief description on the dataset and the
relevant mathematical background. Section 3 focuses on the
temporal-spatial analysis of traffic in cellular networks. Then
detailed spatial study of BSs deployment is made in Section 4. In
Section 5, the heterogeneity of BSs deployment and traffic
temporal distribution is investigated. In the end, we summarise the
paper in Section 6.

2 Background
2.1 Dataset description

The measurement data used in this paper are obtained from cellular
networks of an eastern China city, including traffic and commercial
BSs information. In particular, our traffic datasets are based on a
significant number of practical traffic records from China Mobile
via the Gb interface of 2G/3G cellular networks or S1 interface of
4G cellular networks, while our geographical datasets are collected
from the original engineering database of the operator. The
downlink traffic is measured in the unit of bytes that each BS
transmits to the covered users in one-hour interval for continuous 7
days, from 5573 cellular BSs. Therefore, the traffic record of each
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BS can be regarded as a time series. In addition, the geographic
location (longitude and latitude) of each BS is available. Table 1
lists the corresponding details. For the purpose of confidentiality,
we convert the longitude–latitude information of each BS to X, Y
coordinates in this paper, which does not change the relative spatial
positions of BSs. Fig. 1a draws the X–Y locations of all BSs on the
two-dimensional (2D) plane. 

2.2 Mathematical background

α-Stable model with the property of burstiness, long-range
dependence (LRD) and heavy-tailed distribution, manifests itself in
the capability to characterise the distribution of the normalised
sums of a relatively large number of independent identically
distributed random variables [19]. Since the probability density
function (PDF) is not available in closed-form for most stable
distributions, α-stable distribution is generally specified by its
characteristic function.
 
Definition 1: A random variable X is said to follow α-stable
distribution if there are parameters 0 < α ≤ 2, σ ≥ 0, −1 ≤ β ≤ 1,
and μ ∈ ℛ such that its characteristic function is of the following
form:

ϕ(ω) = E exp(jωX)
= exp −σα |ω |α 1 − jβ(sgn(ω))Φ + jμω ,

(1)

with Φ being given by

Φ =
tan πα

2 , α ≠ 1;

− 2
π ln |ω | , α = 1.

(2)

Here, the function E( ⋅ ) represents the expectation operation
with respect to a random variable. α is called the characteristic
exponent and indicates the index of stability, while β is identified
as the skewness parameter. α and β together determine the shape of
the distribution. Moreover, σ and μ are called scale and shift
parameters, respectively. Specifically, if α = 2, α-stable model
reduces to Gaussian distribution.

Usually, it is challenging to prove whether a dataset follows a
specific statistical distribution, especially for α-stable model
without a closed-form expression for the PDF. Therefore, when a
dataset is said to satisfy α-stable model, it usually means the

dataset is consistent with the hypothetical distribution and the
corresponding properties. In other words, the validation needs to
firstly estimate the parameters of α-stable model based on the
given dataset, and then compare the real distribution of the dataset
with the estimated α-stable model [20].

3 Temporal-spatial analysis of cellular traffic
3.1 Temporal dynamics of cellular traffic and its modelling

Due to subscribers' daily social behaviours, cellular traffic shows
temporal-spatial variations [3]. Fig. 1b plots the three empirical
traffic curves of all BSs and the representative BSs (BS1 and BS2).
Obviously, the aggregated behaviour of all BSs expresses periodic
feature. For individual BS, traffic volume is different, which
implies the imbalanced and heterogeneous features of cellular
traffic at each BS. Furthermore, the traffic record of each BS
possesses significant volatility, thus indicating the existence of
burstiness of cellular traffic.

In order to analyse the burstiness of cellular traffic at different
time scales, we employ m-aggregated series as follows:
 
Definition 2: Given a discrete time series X = (X1, X2, …), m-
aggregated series X(m) (X(m) = Xn

(m); n = 1, 2, 3, …) is the average of
the original series X over non-overlapping blocks of size m [6]

Xn
(m) = 1

m ∑
i = nm − (m − 1)

nm
Xi . (3)

As depicted in Figs. 2a and b, the three-aggregated traffic series
becomes smoother (less bursty) to some degree. Meanwhile, the
variance of the aggregated traffic series at different time scales is
computed to weigh the degree of burstiness. The slowly decaying
variance displayed in Figs. 2c and d reveal that the bursty of
cellular traffic remains significant as time scale increases. What's
more, the three-aggregated traffic series resembles the original one
on shapes. In this regard, self-similarity comes naturally which
reflects the LRD feature of network traffic [9]. 
 
Definition 3: Given a zero-mean, stationary time series
X = (X1, X2, …), we say that X has H-self-similarity, if for all
positive m ∈ N, the sum of the original series X over non-
overlapping blocks of size m has the same distribution as X is
rescaled by mH [7]. That is

Xn ≜ 1
mH ∑

i = nm − (m − 1)

nm
Xi = 1

mH mX(m) . (4)

Here H is called as Hurst parameter with the value ranging from
0.5 to 1, and can be used to measure the degree of self-similarity.
The larger H is, the stronger self-similarity becomes. Specifically,
if H=1/2, the sampled series can be said to be short-range
dependent (SRD) and lack self-similarity [9].

Fig. 1  The illustration of BSs and traffic
(a) All BS locations (black dots) of the eastern China city, (b) Traffic time series of all BSs, BS1 and BS2 during 7 days

 
Table 1 Dataset information
Traffic information BSs information
Traffic resolution Duration No. of BSs Location information (longitude

and latitude)
1 h 1 week 5573 yes
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Variance-time plot is adopted in this paper to measure self-
similarity and estimate Hurst parameter [6], relying on the fact that
the variance of the sample traffic series decreases more slowly than
the reciprocal of the sample size for a self-similar series. The
variance of X(m) is plotted against m on a log-log plot; a simple
least squares line with slope (−β) greater than −1 suggests self-
similarity, and H is given by H = 1 − β/2 [7]. Figs. 2e and f
illustrate the variance-time log-log plots of BS1 and BS2, where
appropriate fitting results (H is 0.711 and 0.648 for the traffic series
of BS1 and BS2, respectively) prove the existence of self-similarity
of the sampled traffic series. Furthermore, we apply variance-time
method into the whole dataset and give the CDF of Hurst
parameter in Fig. 4a. Here, R-square is used to examine the
accuracy of the linear trend of variance-time log-log plot. About
94% of R-square is larger than 0.8, which indicates a good linear
fit.

The infinity of variance caused by LRD of network traffic calls
for α-stable marginal distributions [8]. Therefore, α-stable
distribution with the characteristics of burstiness and self-similarity
is used here to model the traffic patterns. The traffic series of BS1
and BS2 are taken as representative examples, and Fig. 3 presents
the corresponding comparison between the fitting results and the
real ones in term of CDF (cumulative distribution function). The
Kolmogorov–Smirnov test (K-S test) [21] is employed to check for
goodness-of-fit of the empirical data. The K-S test results show
that α-stable distribution cannot be rejected at the 5% significance
level. Meanwhile, the measured K-S test statistic, which is the
maximum distance between the CDF of empirical data and the
reference distribution, are 0.0434 and 0.0671 for BS1 and BS2,
respectively. 

 
Remark 1: Traffic expresses significant burstiness and self-
similarity in cellular networks. Meanwhile, based on K-S test
result, α-stable distribution is suitable to model the temporal
pattern of cellular traffic.

3.2 Spatial dynamics of cellular traffic

Traffic usage over the spatial domain (geographic area), is closely
associated with network performance [10]. Therefore, to help
operators design network more efficiently and reasonably, we
mainly analyse the spatial correlation of BSs traffic series from the
global view (all BSs) as well as the local view (individual BS).

3.2.1 Global spatial correlation.: We calculate the Pearson
correlation coefficient [22] between pairs of BSs by using the time
series of traffic record. Fig. 4b shows the CDF of Pearson
correlation coefficient between all pairs of BSs (black solid line) as
well as the pairs of BSs within different mutual distances (dashed
line). For all pairs of BSs, the median of the Pearson correlation
coefficient is about 0.32, which manifests the traffic at BSs are
indeed spatially correlated. For pairs of BSs in the category of
different distances, all of the medians are larger than 0.32, i.e. 0.41
(≤ 0.5 km), 0.39 (≤ 1 km), 0.36 (≤ 5 km) and 0.36 (≤ 20 km).
Clearly, closer BSs show higher Pearson correlation coefficient.
Furthermore, it is noteworthy that CDFs of the Pearson correlation
coefficient for BSs within 5 and 20 km are almost conforming. 

3.2.2 Local spatial correlation.: From a local perspective, we
calculate the correlation coefficient between a targeted BS and
other surrounding BSs. Here, coefficient-distance curves of three
typical BSs are depicted in Fig. 5. Fig. 5 mainly conveys two key
meanings. Firstly, the traffic series of BSs are spatially correlated.
Secondly, as the geographical distance between BSs increases, the
correlation coefficient would not decrease accordingly. In other
words, the correlation coefficients between pairs of BSs look like
the wave trends that first fall and then rise and again fall. We may
call it spatial long-range dependence Taking advantage of this
finding, we could understand why the CDFs of BSs within 5 and
20 km are almost conforming in the previous part. 
 
Remark 2: Traffic usage at different BSs exhibits spatial
correlation, even spatial long-range dependence to some extent.

4 BSs spatial deployed pattern
4.1 Modelling for BSs deployment

Paul et al. [3] pointed out that less than 10% of the subscribers
generate 90% of the traffic load while 10% of the BSs carry 50–
60% of the traffic load, which implies that traffic spatial dynamics
exhibit heavy-tailed statistical feature as well. Humans with similar
social behaviours tend to live together, which leads to various
traffic hotspots and causes BSs to be deployed densely as clusters

Fig. 2  Cellular traffic and its modelling
(a), (b) Three-aggregated traffic series of BS1 and BS2, (c), (d) Variances of the
aggregated traffic series and, (e), (f) Variance-time plot and the fitting result

 

Fig. 3  For the traffic series of BS1 and BS2, α-stable distribution fitting results versus the empirical ones
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in certain areas. Intuitively, the BS spatial distribution would be
heavy-tailed just like the spatial traffic dynamics. For example, a
real region with size 45 × 90 km2 is selected from Fig. 1a and is
depicted in Fig. 6a. Obviously, it is different from the traditional
distribution pattern simulated by PPP like Fig. 6b. Furthermore,
besides Poisson distribution, we also choose several representative
heavy-tailed distributions in Table 2 as candidates to characterise
the realistic BS deployment. 

Specifically, we first sample the targeted region with a fixed
sliding window randomly. Then we compute the BSs density for
different 10,000 sample windows and obtain the empirical BS
density distribution. Next, we estimated the unknown parameters in
each candidate distributions. Finally, we compared the induced
PDF with the exact (empirical) one.

In terms of the targeted region, we compute the PDF of BSs
density with the sliding window 4 × 4 km2. After fitting the
empirical PDF to candidate distributions (the estimated parameters

in Table 2), we provide the comparison between the empirical BSs
density distribution with the candidate ones in Fig. 7. As depicted
in Fig. 7, the statistical pattern of BSs obviously exhibits heavy-
tailed characteristics. Besides, among all candidate distributions, α-
stable distribution most precisely matches the empirical PDF in
terms of root mean square error (RMSE). The RMSE value of α-
stable, Poisson, log-normal, Weibull is 0.0198, 0.2780, 0.0546 and
0.0942, respectively. These results indicate that the real distributed
pattern of BSs is far away from complete randomness, which can
be verified in Figs. 6a and b intuitively. 

4.2 Self-similarity in BSs deployment

The applicability of α-stable distribution to BSs spatial deployment
motivate us to research spatial self-similarity of BSs distribution.
The region (45 km × 90 km) is divided into 4050 small windows
and BS number in each window is counted. Then we compute the
Hurst coefficient of BSs density by the variance-time plot method.
Figs. 8a and b illustrate the variances at different time scales and
the variance-time log-log plot, respectively. The higher Hurst
coefficient (0.78) proves the existence of self-similarity of BSs
density in spatial domain. 
 
Remark 3: Spatial pattern of the deployed BSs exhibit strong
heavy-tailed and self-similarity characteristics, and α-stable
distribution manifests itself as the most suitable one to model the
BSs deployment in terms of RMSE.

5 Heterogeneity of BSs deployment and traffic
distribution
Based on the statement in Sections 3 and 4, the inhomogeneous
phenomenon does exist in BSs spatial distribution and traffic
temporal distribution, which makes substantial effect on the
network design and resource management. In this section, we focus
on discussing how to quantise the heterogeneity degree for BSs and
cellular traffic.

5.1 Spatial heterogeneity of BSs

In this part, we introduce two methods to study the spatial
heterogeneity of BSs.

5.1.1 Density-based measure.: The first method is the density-
based measure that divides the whole region into smaller window
and count the number of pattern points in each window. The
detailed experimental procedure is listed as follows:

• Firstly, we subdivide the targeted region (X × Y) into N same
regions and obtain the number of BSs in each small region, namely,
(ui, i = 1, 2, …, n).
• Then, according to ui, we sort all the small regions in ascending
order as u(i): u(1) ≤ u(2) ≤ ⋯ ≤ u(n).
• Finally, the target curve is obtained as the ratio of the cumulative
amount of u(i) to the total amount, which can be expressed as
follows:

Fig. 4  Variance-time method into the whole dataset
(a) CDF of Hurst parameter and R-square, (b) CDF of Pearson correlation coefficient
between pairs of BSs (all pairs and pairs within different distances)

 

Fig. 5  Variation of Pearson correlation coefficient with the increasing of the distance between BSs
(a) Example BS 1; (b) Example BS 2; (c) Example BS 3
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ρ(x) =
∑i = 1

nx u(i)

∑i = 1
n u(i)

, 0 ≤ x ≤ 1. (5)

In order to describe the heterogeneity degree of BSs
deployment, we present its coefficient h based on the well-known
definition of Gini coefficient [23]. The coefficient h of BSs
heterogeneity is computed as the ratio by area A and area B (shown
in Fig. 9a)

h = 1 − A
A + B = 1 − 2∫

0

1

ρ(x)dx . (6)

The coefficient h (0 ≤ h ≤ 1) can be used as a metric of BSs
heterogeneity degree. A larger h shows more BSs concentrated in
the spatial domain, while a smaller h shows more equally and
randomly distributed BSs. In other words, if the distributed BSs are
more homogeneity-oriented, the curve is close to the 45∘ line.
However, when BSs are more centralised, the curve will be closer
to the lower right corner in Fig. 9a.

Basing the two aforementioned situations, shown in Figs. 6a
and b, we carry out the above experimental steps with small
window 1 × 1 km2 and get the simulation results in Fig. 9b.
Obviously, the coefficient h of the real BSs deployment is much
larger than the contrast one (random situation). These observations
imply that the real deployed BSs have strong heterogeneity.

5.1.2 Distance-based measure.: For density-based measure, it
is challenging to find a suitable small window size. Therefore, in
order to avoid this kind of problem, the distance-based measure,
considering the distance between every two neighbouring points, is
proposed. For 1D domain, the natural ordering of points are
determined and the distance between every two neighbouring
points can be captured easily. For 2D or multi-dimension, however,
there is no natural ordering for points, thus the definition of
neighbouring points is a problem.

Fig. 6  BS spatial distribution
(a) Real BS locations (blue dots) and corresponding Voronoi cell area, (b) Traditional
BS locations generated by PPP (3097 blue dots) and corresponding Voronoi cell area

 

Table 2 PDF and estimated parameters of candidate
distributions
Distribution PDF Estimated parameters
Weibull pqxq − 1 e− pxq p = 1.1668

q = 0.6519
Log-normal 1

2πnx e−((lnx − m)2)/(2n2) m = − 0.9658

n = 1.3646
α-Stable closed form not always exists α = 0.6764

β = 0.9992
σ = 0.1288
μ = − 0.0519

Poisson λk

k! e
−λ λ=19.2511

 

Fig. 7  Results after fitting BSs density to the candidate distributions, when
the sliding window size is 4 × 4 km2

 

Fig. 8  Variances at different time scales and the variance-time log-log plot
(a) Variances at different time scales, (b) Variance-time log-log plot and fitting result

 

Fig. 9  Coefficient h of BSs heterogeneity
(a) Curve for ρ(x), (b) Heterogeneity coefficient in different BSs distributed scenarios, (c) CDF of heterogeneity coefficient in terms of traffic series in time domain
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Based on the above consideration, we adopt Voronoi cell area
(V) as our choice in the spatial domain, instead of the distance
popularly used in 1D domain.

Here, the coefficient of variation (CoV), which is the standard
deviation normalised by mean, of Voronoi cell area (V), is used to
measure the deviations of the distributed BSs from homogeneity. It
can be defined as follows:

C = σV
μV

. (7)

The larger is the value of C (C ≥ 0), the higher is the BSs
heterogeneity degree. If the BSs are perfectly homogeneous, the
value of C is 0. According to the computed results, the values of C
are 2.4727 and 0.8864 for the real BSs deployment and the random
BSs deployment, respectively. It is consistent with the observations
in the previous part.

In addition, for the purpose of deep understanding on the
statistical characteristic of Voronoi cell area (V), we analyse its
distribution fitting with the aforementioned representative
distributions. Fig. 10 shows us the final fitting results. The K-S test
results show that all candidate distributions would be rejected at
the 5% significance level. However, the measured K-S test
statistics are 0.0424, 0.0693 and 0.1144 for α-stable distribution,
log-normal distribution and Weibull distribution, respectively.
Therefore, in terms of the K-S statistics, α-stable distribution
shows better fitting performance. 

5.2 Temporal heterogeneity of cellular traffic

Inspired by the density-based method that measures the spatial
heterogeneity of BSs distribution, we also adopt this method to
estimate the temporal heterogeneity degree of cellular traffic. The
experimental procedure is similar to the procedure in Section 5.1.1
except the following items:

• The target discussed now is time domain rather than space
domain, which continues for 7 days.
• The small sliding window size is 1 h.
• In each small window, we compute the traffic volume instead of
the number of BSs.

We take all traffic time series (5573) into computation, and
present the CDF of heterogeneity coefficient in Fig. 9c. Obviously,
the median of heterogeneity coefficient is about 0.5. In particular,
when h is 0, it means that traffic load is totally equal at any time
point. When h is 1, it means that all traffic loads are converged at
certain time point.
 
Remark 4: Both the density-based measure metric and distance-
based measure metric, evaluating the deviations of distributed BSs
from homogeneity, are put forward. They both prove that the real

deployment pattern of BSs in cellular networks demonstrates
strong heterogeneity. Meanwhile, traffic temporal heterogeneity
degree is also quantised by density-based method.

6 Discussion and conclusion
6.1 Discussion

Mobile users, BSs and traffic demand are three elementary parts in
the service chain of cellular networks, especially in the radio access
networks. In this paper, we reveal the heterogeneity of BSs
deployment and traffic demand on both temporal and spatial
dimensions, based on realistic data records from operators.
Although the information of individual mobile users are not
available here to confirm the trinity-like connections between these
entities, the linear dependence between traffic and BSs still enables
an insight into the deployment of cellular networks.

For example, as depicted in this paper, the spatial density of
both traffic and BSs exhibit heavy-tailed property, and the density-
based or distance-based measure can be adopted to characterise the
degree of heterogeneity. In real deployment, the operators do not
expect the traffic to be too imbalanced, that's to say, the degree of
heterogeneity cannot exceed some threshold. In this case, the
operators need to deploy new BS to address this overflowing
problem. However, it's difficult to simulate the resulting traffic
distribution considering the new BS deployment even if the
location is determined in advance. On the other hand, it's easier to
calculate the heterogeneity degree of BSs given the location of to-
be-deployed BSs in addition to the spatial distribution of all BSs in
the cellular networks. Therefore, the heterogeneity degree of traffic
can be derived according to the spatial relationship between traffic
and BSs, thus forecasting the resulting effect of new deployment of
BSs, which can be shown as an application of the results in this
paper. Besides the spatial part, the temporal characterisation of
traffic demand can also be used to minimise the spatial density of
BSs or the corresponding on–off policies of BSs, where the
cooperation between BSs need to be investigated.

6.2 Conclusion

This paper focuses on the comprehensive study about the statistical
distribution characteristics of traffic and BSs in cellular network.

For traffic, we verify the periodicity of the aggregated
behaviour of all BSs as well as the unbalanced feature for single
BS. Then burstiness of cellular traffic at different time scales and
the induced self-similarity are also confirmed. In consideration of
the traffic nature, α-stable distribution is preferred here to extract
the traffic characteristics, and K-S test results prove its
applicability. Moreover, we also find that positive correlation does
exist between the traffic series at BSs.

For BSs, we verify the existence of heavy-tailed characteristic
in realistic BS deployment and α-stable distribution manifests its
higher accuracy in modelling the BSs locations. Afterwards, the
self-similarity of network topology is also proved by the Hurst
coefficient. At the same time, considering the clustering effect of
BSs deployment in real network topology, we present the density-
based metric and the distance-based metric to evaluate the spatial
heterogeneity of the deployed BSs. Both the density-base metric
and the distance-based metric, prove that the real spatial pattern of
BSs shows strong heterogeneity.

In summary, all findings based on the practical measurement
data from mobile operator, provide helpful guidance for future
network design and optimisation.
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