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ABSTRACT The performance of cellular system significantly depends on its network topology, while
cellular networks are undergoing a heterogeneous evolution. This promising trend introduces the unplanned
deployment of smaller base stations (BSs), thus complicating the performance evaluation even further. In this
paper, based on large amount of real BS locations data, we present a comprehensive analysis on the spatial
modeling of a cellular network structure. Unlike the related works, we divide the BSs into different subsets
according to geographical factor (e.g., urban or rural) and functional type (e.g., macrocells or microcells),
and perform a detailed spatial analysis to each subset. After discovering the inaccuracy of the Poisson point
process in BS locations modeling, we consider the Gibbs point processes as well as Neyman–Scott point
processes and compare their performance in the view of a large-scale modeling test, and finally reveal
the general clustering nature of BSs deployment. This paper carries out the first large-scale identification
regarding available literature, and provides more realistic and general results to contribute to the performance
analysis for the forthcoming heterogeneous cellular networks.

INDEX TERMS Cellular networks, base station (BS) locations, stochastic geometry, Poisson point process,
large-scale identification.

I. INTRODUCTION
The spatial structure of base stations (BSs) has a great impact
on the performance of cellular networks, since the received
signal strength varies depending on the distance between
transmitter and receiver [1]. Moreover, interference charac-
terization is very complicated and challenging due to path loss
and multipath fading effect, in particular for a heterogeneous
networking scenario consisting of different types of BSs.
In order to evaluate the network performance more accurately
and tractably, it is essential to obtain realistic spatial models
for BSs deployment in cellular networks [2]. This paper aims
to identify the most appropriate point process models of
BSs’ spatial distribution, based on massive real data from
on-operating cellular networks.

A. RELATED WORKS
By far, hexagonal grid model has been a popular approach
to model BS locations in academia and industry due to
its simplicity and regularity. However, real BSs deployment

is significantly influenced by factors like population and
geography, which makes the regular grid assumption
impractical.

To solve this problem, in recent years, Poisson point
process (PPP) has been proposed as an effective way
to model various network structures [1]–[4]. As a base-
line role, PPP model can provide tractable and useful
results for performance evaluation in both one-tier and
multi-tier networking scenarios [5], [6]. However, it may
not be the most suitable one to model BS locations as
researchers still hardly reach a consensus on PPP’s per-
formance to model the real deployment. For example
in [3] and [7], the authors observe inconsistent coverage
probability performance of the PPP model when modelling
the real BS locations data from different cities of the world.
Given these conflicting results above, it is still worthwhile
to conduct more comprehensive investigation to provide
trusty conclusion, and take more realistic models into
consideration.
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Generally, in stochastic geometry literature, despite of
PPP’s mathematical perfection, there are plenty of choices
including regular and clustered point processes [8] to model
various spatial patterns. For example, in [9], the authors dis-
cover that the Geyer saturation process, which takes account
of pairwise interaction between points, can accurately repro-
duce the spatial structure of various wireless networks. More
specifically in cellular networks, Geyer saturation process
and its special case Strauss process are utilized to model
macrocellular deployment for different scenarios in [10].
Besides, Poisson hard-core process (PHCP) is also proposed
to model BS locations in [11], and Poisson cluster process
is verified to be able to model BSs deployment in urban
areas [7]. Similarly, the Ginibre point processes and deter-
minantal point processes have been investigated as suitable
models for wireless networks with nodes repulsion [12], [13],
obtaining a tentative compromise between accuracy and
tractability. Very recently, the α-Stable distribution [14] is
proved as an accurate model for characterizing the statisti-
cal nature of BS density in cellular networks. In summary,
various point processes have been employed to model BSs
spatial structure based on different data sets from cellular
networks [15], but the conclusion is still indistinct so far in
this literature, due to the considerable insufficiency of the
amount of real data samples.

Indeed, the actual spatial distribution of BSs in cellular
networks is far more complicated than what is commonly
expected. Firstly, various regions such as rural and urban
areas are deemed as distinctively different cases, owing
to population density divergence and disparate traffic
demands [10]. Secondly, because of the practical limitation in
BSs site selection, the human factor and geographical effect
have significant impact on BSs spatial distribution whichmay
be directly invisible for expressing the spatial pattern. Thirdly,
for heterogeneous multi-tier cellular networks, each tier dif-
fers in transmit power and coverage area. As a result, the
BS locations in each tier may have a significant correlation
in order to mitigate inter-tier interference [16], [17].

In order to solve these challenging problems, massive real
data on BS locations is essential and can provide a holistic
view on this topic. Moreover, due to its complexity, a rea-
sonable proposition for BSs spatial modeling may be that
different point process models work for different dimensions,
such as rural and urban areas in geographical dimension or
macrocells and microcells in functional dimension [18], [19].

In addition to the real data sets used in BSs spatial char-
acterization, the statistical modeling process itself entails a
two-fold preparation. The first component is the point process
selected to be fitted to the point pattern of real data, the
other one is the performance evaluation metrics utilized for
model hypothesis testing. Actually, in some cases, BSs are
neither too close nor too far away so as to guarantee full
coverage and mitigate inter-cell interference. This kind of
phenomenon provides a reasonable basis for the utilization
of Gibbs point processes, which can describe the repulsive
property. Besides, in some dense urban areas, BSs tend to

be aggregately distributed in order to provide high capacity
requirement for more subscribers, thus Neyman-Scott
processes are employed to capture this phenomenon
properly. Thus, in terms of accuracy and usability, Gibbs
point processes and Neyman-Scott processes [8] are adopted
as candidate models for BSs spatial characterizing in this
paper.

Moreover, two types of metrics categorization, namely
classical or statistical metrics and network-layer performance
metrics, are adopted for hypothesis testing. The widely
applied statistical metric is Ripley’s K -function or its trans-
formation L-function [20], while the coverage probability is
the most popular metric of performance evaluation due to its
fundamental usage in wireless network analysis.

Given these spatial model candidates and hypothesis
metrics, we provide the spatial modeling of all the BSs
within multiple tiers. Afterwards, we divide the overall BSs
dataset into disjoint subsets according to geographical factor
(e.g. rural or urban areas) and functional type (macrocells
and microcells), respectively. To be comprehensive, we go
further to test the distribution properties of BSs from each tier
separately. Combined with the detailed analyses in regard to
different tiers of BSs, the spatial modeling considering social
influence such as population and service demands in rural
and urban areas deserves to be investigated for expressing
the deployment heterogeneity of cellular networks in various
dimensions.

B. OUR APPROACH AND CONTRIBUTIONS
The objective of this paper is to obtain realistic spatial models
for BS locations in cellular networks. Compared with the
existing literature, the merits in our approach are three-fold.
Firstly, our work is based on massive real BSs deployment
data from one of the largest telecommunications operator in
China, and thousands of geographical regions are randomly
selected to identify different point processes. The extremely
huge amount of data source ensures the accuracy, reliability
and universality of the resulting models. Secondly, all the
representative models including PPP, Gibbs point processes
and Neyman-Scott point processes are adopted as candi-
dates in the model verification, and different models are
compared in term of modeling accuracy. Thirdly, separate
modeling is conducted for different tiers and different regions
within the heterogeneous cellular networks. To the best of
our knowledge, it is the first time that multiple tiers are
independently analyzed based on massive real data in order
to obtain architecture-oriented spatial models. Accordingly,
our technical contributions in this paper are multi-fold as
well.
• The accuracy of the enormously used PPP model
in cellular networks is questioned by our large-scale
identification based on real data measurements. This
result will strongly challenge the popular adoption of
PPP model in networking performance evaluation.

• The general clustering nature of BS locations is revealed
with randomly massive verification, and it clearly
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reflects the aggregation property of ever-growing traffic
demands in cellular networks.

• By comparing the accuracy of different spatial mod-
els based on statistical identification, it’s verified that
Neyman-Scott point processes have superior modeling
accuracy than Gibbs point processes.

However, the significant gap between these theoretical
models and the real BSs deployment surely requires more
appropriate models for better characterization.

The rest of the paper is organized as follows. Section II
gives a detailed description of the real BSs data sets
employed in this paper. Then, various representative spatial
point processes for modeling BS locations are introduced
in Section III. After that, the point process fitting methods
and the evaluation statistics are presented in Section IV.
Identification results for different spatial models and the rele-
vant discussions are provided in Section V before conclusions
summed in Section VI.

II. BASE STATION DATA SET DESCRIPTION
In order to obtain an accurate and realistic point process to
model the real deployment of BSs, our work is based on
massive amount of real data including all BS-related records
from the largest cellular networks operator in an advanced
eastern province of China with resident population up to
54.77 million or 526 persons per square kilometer. Within
this 104,141 square kilometers province, the data set includes
47663 base stations of GSM cellular networks with more
than 40 million subscribers been served, and each record
of the BS contains the corresponding coverage area, loca-
tion information (i.e. longitude, latitude, etc.) and BS type
(i.e. macrocell or microcell) and so on.

Based on the coverage area and location information, we
can divide the dataset into disjoint subsets. For example, we
obtain the subsets for urban areas and rural areas, bymatching
the geographical feature with local maps. In this paper, for
representativeness and integrality, we mainly consider three
typical urban areas and one large rural area to examine the
accuracy of various candidate models for BS locations spatial
distribution. The population of these selected urban areas are
three-layered, ranging from 1 million to 5 million, covering
the so-called metropolis city, big city and medium city.
Two of them (city B, C) are coastal cities, while the other
one (city A) being inland city. Besides, the rural area covers
a large portion of the central part in this province with more
expansive bound. The detailed information of these selected
areas are summarized in Table 1.

TABLE 1. Information of selected regions.

From Table I, we can observe that the BSs deployed in
urban areas are much more denser than those of the rural
area, so does the percentage of microcells’ number in all BSs.
Within these large areas, we firstly pick two representative
small regions as showcase for model fitting and hypothesis
testing to explain how the statistical fitting process works.
The first small region with area size 3 × 3 km2 is ran-
domly chosen from the urban area as a sample of urban
scenario, containing 249 BSs including 84 macrocells and
165 microcells. The high percentage of microcells’ number
reflects the great capacity demand in this dense urban region.
The second 20 × 20 km2 region is selected from the broad
rural area as a rural sample, and it contains 79 BSs with
only 5 microcells. The low density of BSs distribution and
even fewer microcells in rural area express the relatively
high requirement for network coverage rather than capacity
enhancement. BS locations in these two regions are depicted
in Fig. 1 (a-b).

FIGURE 1. BS locations in two sample regions, the blue dots represent
the macro BSs while red crosses are the micro BSs. (a) BS locations in the
chosen urban region from city A. (b) BS locations in the chosen rural
region.
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After demonstrating the overall modeling procedure, we
randomly choose thousands of small regions from those three
large urban areas (city A, B, C) and the large rural area to
identify the accuracy of various candidate models in different
scenarios.

III. SPATIAL POINT PROCESS MODELS
The most basic component in stochastic geometry is the spa-
tial point processes, within which different models will result
in different network topologies. Intuitively, point process (PP)
is a collection of points distributed in a selected window
on the plane. More formally, a point process can be inter-
preted as a measurable mapping from a certain probability
space to the space of point measures. In general cases, the
point process can be represented as a countable random set
8 = {z1, z2, . . .}, of which the intensity measure 3 of
8 is defined as 3(B) = E{8(B)}, where B is a sub
region of 8 and 8(B) denotes the number of points in B.
There are many kinds of point processes, such as the PPP,
Hard-core processes, Gibbs processes, Neyman-Scott
processes and the Cox processes [8], [21]. They can also
be categorized into three sets, the PPP, regular processes
and clustered processes. Among the regular point processes
where repulsion is exhibited, Gibbs processes take a large
part of them. Neyman-Scott process is a very typical class in
clustered point processes, where there is attraction between
points. Since real BSs deploymentmay be regular or clustered
across the whole networking plane, and different regions
may have different distribution patterns, we consider all
kinds of the above models in this paper in order to learn the
comparatively suitable point process model. In order to make
the description more precisely, a tree structure between these
different point process models are given in Fig. 2.

FIGURE 2. Tree structure of different point process models.

A. COMPLETELY RANDOM PROCESSES
Poisson point process is the complete random point process
where there is no repulsion or attraction between any points.

1) POISSON POINT PROCESS
Let 3 be a locally finite measure on some metric space E,
a point process 8 is Poisson on E if: (1) For every bounded

closed set B, 8(B) follows a Poisson distribution with
mean λ|B|, where λ is the density of this point process.
(2) For disjoint closed subsets B1, B2, . . . ,Bn, the number
of points in each subset 8(B1), 8(B2), . . . , 8(Bn) is
independent.

B. THE GIBBS POINT PROCESSES
Gibbs point processes are important branches in the stochas-
tic geometry literature. They are also referred asMarkov point
processes, because their property can be characterized by
probability density, which is helpful in fitting and simulation
using Monte Carlo method. Without loss of generality, we
consider a point pattern z = {z1, z2, . . . , zn(z)} placed in a
bounded windowW , where n(z) is the number of points in z.
For simplicity, only pairwise interaction is considered here,
and its probability density function (PDF) can be defined as:

f (z) = α · [
n(z)∏
i=1

µ(zi)] · [
∏
i<j

ρ(zi, zj)], (1)

where α is a normalizing factor to ensure the integral to unity,
µ(zi) are functions modeling the first order property, and
ρ(zi, zj) are functions representing the pairwise interaction.
Usually, for stationary point process, µ(z) is set to be a
constant β for all points, while defining ρ(zi, zj) as follows:

ρ(zi, zj) =

{
1, ‖ zi − zj ‖> r
γ, ‖ zi − zj ‖≤ r .

(2)

Then the PDF is simplified to be:

f (z) = αβn(z)γ p(z), (3)

where p(z) is the number of point pairs that are less than r
units apart in distance, and α, β, 0 ≤ γ ≤ 1. If γ = 1,
there is no interaction between points, and it can be simplified
to a PPP with intensity β. So the Gibbs processes include
PPP as a special case. According to different assignments for
the parameters β and γ , there are different kinds of pairwise
interaction processes, such as the Strauss process, Hardcore
process and Geyer process. We will give brief description on
this point processes as following.

1) THE POISSON HARDCORE PROCESS
A hardcore point process is a kind of point process in which
the constituent points are forbidden to lie closer than a certain
positive minimum distance. Compared to other hard-core
processes, PHCP has the promisingmerit of fitting efficiency.
By setting γ = 0 in Eq. (2), the PDF of Poisson hard-core
process can be written as:

f (z) = αβn(z)1(p(z) = 0), (4)

The indicator function in the above equation is 1 if the pair
number p(z) is 0. Intuitively, the probability density is zero
when any pair of points is closer than r units.
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2) THE STRAUSS PROCESS
Strauss point process constitutes a large part of Gibbs pro-
cesses, and specifically it is a model for characterizing spatial
inhibition if the parameter γ ranges from 0 to 1. Its PDF is
similar to Eq. (3), where each point contributes a factor β
to the probability function, and each pair of points closer
than r units contributes a factor γ to the density. For the two
marginal values of γ , γ = 1 reduces the Strauss process to
a PPP, while γ = 0 makes it to be a hard-core process as
mentioned above.

3) THE GEYER SATURATION PROCESS
The Geyer process is a generalization of Strauss process,
which is also able to model clustering effect of a point pattern
by tuning the parameter γ . Actually, as seen in Eq. (3), the
probability density is not integrable if γ > 1, which is an
essential condition for modeling clustering effect. In order to
make the PDF integrable, a saturation threshold is added and
the probability density becomes:

f (z) = αβn(z)γmin(p(z),sat). (5)

Due to the presence of sat , the increasing trend of the PDF
when γ > 1 is limited thus brings the model capability to
characterize clustering effect. Moreover, the Geyer saturation
process will reduce to a PPP for sat = 0, or a Strauss process
for sat →∞.

C. NEYMAN-SCOTT POINT PROCESSES
Neyman-Scott processes are special examples of Poisson
cluster processes [8], which are commonly used in spatial
statistics. The points following Neyman-Scott processes con-
sist of the set of clusters of offspring points, centered around
an unobserved set of parent points. The parent points form
a homogeneous Poisson process of intensity λp, while the
offspring points around per cluster are random in the number
and are scattered independently with identical spatial
probability density around the origin. The Matern cluster
process (MCP) and Thomas cluster process (TCP) are two
representatives of Neyman-Scott processes, and they are dis-
tinguished by the difference on how the offspring points are
distributed around the cluster center.

1) MATERN CLUSTER PROCESS
Matern cluster process is a special case of the Neyman-Scott
process, where the number of offspring points per cluster is
Poisson distributed with intensity λc, and their positions are
placed uniformly inside a disc of radius R centred on the
parent points. We assume that the cluster centers form the
point pattern c which is Poisson distributed with intensity
λp > 0. For c = {c1, c2, . . . , cn}, associate each ci with
a Poisson point process zi with intensity λc > 0 and these
offspring point processes are independent with each other.
The density function at a point ξ around parent point ci can
be written as:

f (ξ − ci) =
2r
R2
, for r =‖ ξ − ci ‖≤ R. (6)

2) THOMAS CLUSTER PROCESS
Unlike the uniform spatial distribution of offspring points
around the parent points in MCP, the isotropic Gaussian
displacement is utilized in TCP. Replacing the corresponding
parameterR inMCP, a standard deviation of random displace-
ment of a point from its cluster center marked as σ is adopted
along with the densities λp and λc. Then the density function
of TCP is:

f (ξ − ci; σ 2) =
1

2πσ 2 exp[−
1

2σ 2 ‖ ξ − ci ‖
2],

ξ ∼ N (ci, σ 2). (7)

MCP and TCP are widely used in the spatial modeling of
aggregated distribution phenomenon. Considering the con-
venience of simulation [22] and the tractability [23], both
MCP and TCP are employed as cluster point processes
models to characterize BS locations in this paper.

IV. FITTING METHOD AND EVALUATION STATISTICS
Given the real data ready to be analyzed and various point
processes as candidates for accurate model, appropriate sta-
tistical analysis is essential to connect these two components.
Similar with common statistical estimator based on observed
values, the maximum likelihood method is straightforward
and very powerful here. Using likelihood-based method
(pseudolikelihood and composite likelihood), themost appro-
priate parameters are obtained for each point process by
fitting to the observed point pattern. Afterwards, relevant
evaluation statistics are calculated for each fitted model and
compared with that of the real point pattern, in order to
identify which point process is the most suitable model for
the real BS locations.

A. FITTING METHOD FOR POINT PROCESSES
Likelihood-based fitting method is a common fitting
approach in stochastic geometry. Combined with the
probability density description of Gibbs point processes,
the method of maximum pseudolikelihood is direct and
very convenient for fitting and obtaining the corresponding
parameters.

1) MAXIMUM PSEUDOLIKELIHOOD METHOD
For PPP fitting process, the method of maximum pseudo-
likelihood is the same as maximum likelihood approach. For
example, the data consist of a spatial point pattern z observed
in a bounded region W . Then, the homogeneous Poisson
point process with intensity λ > 0 has a likelihood function
f (z; λ) = exp{−(λ − 1)}‖W‖λn(z), where n(z) denotes the
number of points in z and ‖W‖ is the volume of W . This
yields the maximum likelihood estimate λ̃ = n(z)/ ‖W‖.

For Poisson hard-core process, r can also be obtained
by the method of maximum pseudolikelihood. In the fitting
process, different values of r are tested and then we obtain the
corresponding fitted models by the maximum pseudolikeli-
hood method and select the value of r whose fitted model has
the largest maximum pseudolikelihood. Similarly, the other
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parameters in Eq. (4) can be obtained by using this method
again.

For Strauss point process, as the density function defined
in Eq. (3), there are four parameters need to be determined,
namely regular parameters α, β and γ along with the irreg-
ular parameter r which is the interaction radius. Firstly, r is
selected from the empirical range [R/2, 4R] by the method of
maximum profile pseudolikelihood, where R is the average
distance to the nearest neighbor of each point in the point
pattern z. Then, after the irregular parameter r is obtained, the
other regular parameters can be determined by the maximum
pseudolikelihood method repeatedly.

The fitting procedure for Geyer point process is similar
to that of the Strauss process, except that another irregular
parameter sat is added. Usually, the range of sat is chosen to
be relatively lower values in order to make the evaluation of
the pseudolikelihood computationally fast, like [1, 5] in this
paper. All the fitting and simulation processing are completed
with the Spatstat package in R software environment [24].

2) COMPOSITE LIKELIHOOD APPROACH
The pseudolikelihood method is too computationally inten-
sive to be applicable for Neyman-Scott point processes.
Composite likelihood approaches have been proposed as
an efficient and feasible way to deal with this problem,
and they can be performed for any process with a second-
order intensity function [8]. The second-order statistics of
Neyman-Scott point process are well defined. Thus, the sta-
tistical properties of MCP and TCP match with the fitting
process of composite likelihood approach very well. Con-
cretely, the composite likelihood is firstly formed by intro-
ducing some pairwise composite likelihood functions that are
defined by second order statistics of the underlying process,
and then used for estimating the unknown parameters. The
estimation process is computationally simple and can pro-
vide consistent results [25]. So in this paper, in order to be
consistent with the pseudolikelihood method in Gibbs point
processes modeling, we adopt composite likelihood method
to fit the Neyman-Scott point processes to the real data sets.

B. GOODNESS-OF-FIT EVALUATION STATISTICS
After the fitting procedure, the goodness of the fitting results
is verified using some evaluation statistics. There are many
statistics being able to characterize the distribution of a point
pattern, such as the pairwise correlation function g(r) and the
Besag-Ripley’s L-function [8]. Indeed, as we are analyzing
the spatial structure of BS locations in cellular networks, the
practical network performance metric can also be introduced
as a more relevant and straightforward reference for eval-
uation. In this paper, the classical statistics like L-function
and network performance metrics like coverage probability
are employed as evaluation statistics in the identification of
different point process models.

1) L-FUNCTION
In stochastic geometry theory, second-order statistics on spa-
tial point processes describe the so called average behaviour

of the point process of interest and give information on many
scales of distance. Ripley’s K -function is one of the widely
used second-order statistics to characterize a point process.
Concretely, it is related to point location correlations and can
be defined as:

K (r) =
1
λ
E[8(z ∩ B(x, r)\{x})|x ∈ z], (8)

where λ is the intensity and 8(z) is the point number in z.
λK (r) can be interpreted as the mean number of points y ∈ z
that satisfy 0 < ‖y− x‖ ≤ r , given x ∈ z.
L-function is a transformation of the Ripley’s K -function,

which is widely used to test the validity of a point pro-
cess [26]. It reflects the regularity or clustering property of
a point pattern and is defined as:

L(r) =

√
K (r)
π

. (9)

For a completely random (uniform Poisson) point pattern, the
theoretical value is L(r) = r , which is used as a baseline to
judge a point pattern’s spatial characteristic [26]. If L(r) < r ,
then there is dispersion on this r scale and should be modeled
by a repulsive point process; otherwise it is aggregated if
L(r) > r and should be modeled by a clustering point
process. Due to its explicitness and importance, L-function
is adopted as the basic statistical metric in this paper.

2) COVERAGE PROBABILITY METRIC
In order to find a realistic model, we choose the coverage
probability as an evaluation metric to bridge the modeling
validity and actual network performance. More formally, the
coverage probability of a specific region is the probability
that the SIR (Signal to Interference Ratio) of a randomly
located user achieves a given threshold in the surrounding
cellular network. Assuming each mobile user connects to the
BS that offers the highest received power, while the other BSs
in the region transmit as interferers as the frequency reuse
factor is assumed to be 1. Apparently, the SIR of each user
and the resulting overall coverage probability depend on the
transmit powers of the BSs, the channel effect and the path
loss propagation. Randomly selected in the region of z, the
resulting received SIR in position s is calculated as:

SIR(s, z) =
Pyhyd(s, y)−αsy∑

x∈z\y Pxhxd(s, x)−αsx
. (10)

Px and Py are transmit powers of the corresponding
interfering BSs and serving BSs and rayleigh fading is
adopted as hx , hy ∼ exp(1), which is exponential distributed.
sx , sy reflect the shadowing effect and is modeled as lognor-
mal distribution. The path loss exponent α is assumed to be 4
for dense urban scenario and 2.5 for rural regions.

To identify whether a point process model is suitable
for a point pattern or not, we firstly fit these introduced
models to the specific sample, then get proper parameters
for each model using likelihood-based method mentioned
in Section IV. After that, the critical envelopes are set up
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as follows. Firstly, we calculate the theoretical mean value of
the summary statistic of a fitted model. Then, 199 realizations
of each fitted model are generated. For each simulation, we
compare the simulated curve to the theoretical curve and
compute the maximum absolute difference between them
(over the r distance scale or SIR threshold). This gives a
deviation series value for each of the 199 simulations. Finally,
we take the 10th largest of the deviation value and call
it dev. Then the simultaneous envelopes are of the form
low = expected − dev and high = expected + dev where
expected is either the theoretical value (PPP) or the estimated
theoretical value (other models). This simultaneous critical
envelopes have constant width 2 ∗ dev and reject the null
hypothesis if the curve of the desired evaluation metric lies
outside the envelope at any value of the r and SIR. This test
has exact significance level α = 10/(1+ 199) = 5% [24].

V. MODELING SPATIAL PATTERNS OF BSs DEPLOYMENT
AND IDENTIFICATION RESULTS
In this section, as case study, we first perform the fitting
and hypothesis testing for the two small regions in Fig. 1(a)
and Fig. 1(b) in order to describe the whole identification
procedure clearly. Specifically, for the dense urban area, sepa-
rate spatial characterization is applied to both macrocells and
microcells and the accuracy of respective models is testified.
After the sample analysis, we conduct the large-scale identifi-
cation across the whole province areas and obtain the outage
probability of each candidate point process that models the
randomly chosen regions in term of L function.

A. SPATIAL MODELING FOR URBAN
REGION - CASE STUDY I
For the dense urban region in Fig. 1(a), all BS locations con-
stitutes point pattern x. Respectively, the 84 macrocells are
referred as point pattern x1 and the microcells make up point
pattern x2. Before the point processes fitting, the L function
of the three point patterns aremeasured and depicted in Fig. 3.

FIGURE 3. L function of point pattern x as all BSs, subset x1 as macrocells
and subset x2 as microcells, compared with the theoretical curve for PPP.

From Fig. 3, we can find that the L function of both point
pattern x and x2 are above the theoretical curve of PPP.
It means that the whole set of BSs x in this region appears
to be clustering distributed, and so does the microcells’ sub-
set x2. On the other hand, the L function of the macrocells’
subset x1 is repulsively deployed because the curve is clearly
below the theoretical curve.

Next, we will conduct the modeling processes separately
for macrocells and microcells, i.e. point pattern x1 and x2.
Since they are just subset of the overall BSs in this region,
the network performance metric is not considered in the
modeling. Thus for simplicity, only the spatial structure
of these detached BSs is analyzed here by applying the
L function statistics. For the whole BSs set, both the
L function and coverage probability are utilized as evaluation
metrics to test the goodness of fit for various candidate point
process models.

1) SPATIAL MODELING FOR ALL BSs
Before separate spatial modeling for macrocells and
microcells, the spatial distribution of the whole set of BSs
is investigated here. The spatial structure of BSs in dense
urban area gives an indirect vision of spatial distribution of
users and traffic in cellular networks. In this part, we use both
metrics (L function and coverage probability) to test which
model is suitable for the spatial pattern of x.

FIGURE 4. L function of x and its envelopes of the fitted models.
(a) L function of point pattern x. (b) Poisson and Geyer envelopes.
(c) Hardcore and Strauss envelopes. (d) Matern and Thomas envelopes.

In Fig. 4, the L function curve of point pattern x and
its fitted envelopes are presented. As seen in Fig. 4(a), the
L function curve of x is firmly above the theoretical curve
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of PPP L(r) = r , which means that the BSs are aggregately
deployed in this region. For the fitted models in Fig. 4(b),
the curve overflows the envelope of the fitted PPP and Geyer
process thus rejects these two model hypotheses. The same
result is shown for Strauss and Hardcore in Fig. 4(c), and
for MCP and TCP in Fig. 4(d). All of the high bounds of
the fitted envelopes can not surround the real curve, which
means that this sample region is too aggregately distributed
to be captured by these six point process models.

Besides the L function, the identification results of another
metric (i.e. coverage probability) are present in Fig. 5. Firstly,
the coverage probability of point pattern x with different
lognormal shadowing parameter is depicted Fig. 5(a). Then
for the fitted models, lognormal shadowing of 3dB is adopted
to calculate each envelope. We can observe that coverage
probability is not distinguishable in the modeling hypotheses
testing since the envelopes of each candidate model surround
that of the real data very well.

FIGURE 5. Coverage probability of x and its envelopes of the fitted
models. (a) Coverage probability of x. (b) Poisson and Geyer envelopes.
(c) Hardcore and Strauss envelopes. (d) Matern and Thomas envelopes.

2) SPATIAL MODELING FOR MACRO BSs
For the subset point pattern x1, since macro BSs are deployed
to satisfy coverage requirement, the points tend to be neither
too close nor too far away from each other, as seen in Fig. 1(a).
To describe this property explicitly, we fit the six candidate
models introduced above to the point pattern x1, and plot the
envelopes of L function of these fitted models.
The L function of x1 (macrocells) is depicted in Fig. 6

along with the envelopes of its fitted point process models.
As seen in the Fig. 6(a), the L function is exactly below the
theoretical curve of PPP, which indicates that the macro BSs

FIGURE 6. L function of x1 and its envelopes of the fitted models.
(a) L function of x1. (b) Poisson and Geyer envelopes. (c) Hardcore and
Strauss envelopes. (d) Matern and Thomas envelopes.

tend to be dispersively distributed. Besides it, the envelopes
in Fig. 6(b) show that the PPP hypothesis for point pattern x1
cannot be rejected by this metric, while Geyer process is
the opposite. It is the same situation in Fig. 6(c), we can
deny the Strauss hypothesis of x1 but reserve the Hardcore
claim. Surprisingly, the envelopes of the fitted MCP and TCP
models capture the real data very well as PPP does.
Remark: Macro BSs tend to have a repulsive distribution

in dense urban area, which reflects its original functionality
in cellular networks deployment.

3) SPATIAL MODELING FOR MICRO BSs
Unlike macro BSs, microcells are usually deployed by
operators to diminish coverage hole and offload heavy traffic
from macrocells. As seen in Fig. 1(a), micro BSs are more
intensively distributed than macro BSs. Visibly, the L func-
tion of x2 and its fitted envelopes are presented in Fig. 7.
Comparatively, the L function ofmicrocells is totally above

the theoretical value of PPP which verifies the clustering
nature of the distribution of micro BSs. More specifically,
in the Fig. 7(b), the fitted PPP and Geyer process fail to
contain x2 within their L function envelope. Thus PPP and
Geyer process model can be rejected by this hypothesis test,
so do Strauss process and Hardcore process in Fig. 7(c).
These results confirm the aggregation property of microcells’
distribution in this selected region. While in Fig. 7(d), the
L function envelopes of MCP and TCP accept that of x2 very
well. Combining these results above, we can conclude that the
microcells in this dense urban region tend to be aggregately
distributed and may be well characterized by MCP and TCP.
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FIGURE 7. L function of x2 and its envelopes of the fitted models.
(a) L function of x2. (b) Poisson and Geyer envelopes. (c) Hardcore and
Strauss envelopes. (d) Matern and Thomas envelopes.

Remark: Micro BSs in dense urban area tend to be
aggregately deployed to fulfill the heavy concentrated capac-
ity demand.

B. SPATIAL MODELING FOR RURAL
REGION - CASE STUDY II
As seen in Table I, the BSs density in rural regions are much
less than urban regions, due to the relatively smaller popu-
lation and much less service demand. In this subsection, we
will turn to the representative sample of rural region to check
the difference between the urban and rural BSs deployment,
which in return reflects the urbanization process and extent
of different regions.

In the selected rural region as illustrated in Fig. 1(b), there
are 79 BSs with only 5 microcells within this 20 × 20 km2

area which is referred as point pattern y. Since the number
of microcells is very few, we analyze the whole set of BSs in
this region regardless of the different BS types.

In Fig. 8, the L function of point pattern y is presented
with envelopes of its fitted point processes. In Fig. 8(a),
the regularity of point pattern y is clearly observed, as the
L function curve of y does not exceed the theoretical curve of
PPP for the most part. For the fitted models, as in Fig. 8(b),
the envelope of PPP encompass the L function curve very
well while Geyer point process fails in the range near 1 km.
Moreover, in Fig. 8(c), the Hardcore point process captures
the curve completely while Strauss process is unsatisfied.
However, in Fig. 8(d), both of the envelopes of MCP and
TCP fit the curve remarkably. This result indicates that the

FIGURE 8. L function of y and its envelopes of the fitted models.
(a) L function of point pattern y. (b) Poisson and Geyer envelopes.
(c) Hardcore and Strauss envelopes. (d) Matern and Thomas envelopes.

so-called cluster processes can also manage to be applied to
the regular point pattern since the parameters of these models
have a relatively high degree of freedom.

Besides the L function, the coverage probability of point
pattern y and the corresponding envelopes are also depicted
in Fig. 9. Counterintuitively as in Fig. 5, the envelopes of
all fitted models encompass the real curve of y very well,
thus we show that the coverage probability metric is not
distinguishable in this test. In this respect, in the following
part of large-scale spatial distribution identification, we adopt
the L function as the only goodness-of-fit metric to determine
the applicability of fitted point processes in regard to huge
amount of selected regions.

C. LARGE-SCALE SPATIAL MODELING IDENTIFICATION
After the modeling identification procedure of representative
regions, we will carry out large-scale identification, in order
to have a more accurate and general modeling result for
BS locations. Basically, the identification process contains
two steps. Firstly, we test the disperse or clustering property
of BS locations for all kinds of diverse areas such as rural
and urban areas, and for different types of BSs such as
macrocells and microcells. Then, after obtaining the spatial
characteristics of BSs, we go further to identify the suit-
able spatial point process for the corresponding scenarios.
Similarly, both of these two steps are based on the large
amount of real data from the same cellular network operator
and the classical statistical metric L function in stochastic
geometry.
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FIGURE 9. Coverage probability of y and its envelopes of the fitted
models. (a) Coverage probability of y. (b) Poisson and Geyer envelopes.
(c) Hardcore and Strauss envelopes. (d) Matern and Thomas envelopes.

1) SPATIAL CHARACTERISTICS OF
BASE STATIONS DISTRIBUTION
In order to reveal the fundamental spatial characteristics of
BSs distribution, the testification of disperse or aggregate
property is the first-step procedure, meanwhile it is a straight-
forward way to verify the accuracy of PPP model as well.

Actually, the L function is computed on a distance scale
and it varies depending on the locations of points in the
selected region. Specifically, if L(r) > r , we say this point
pattern is aggregated on this r scale, otherwise we call it
dispersed in this distance. Thus, this property (dispersion or
aggregation) can be evaluated on the distance scale, rather
than on a particular point pattern. According to this method-
ology, we firstly examine four sufficiently large areas chosen
from the real data set, and find the clustering tendency and
property of BS locations on the large scale. Moreover as a
comparison, on a smaller scale as in the previous sections,
we also select thousands of small regions covering urban and
rural areas to verify this claim.

Firstly, the L function of these four large areas is depicted
in Fig. 10 (a-d) respectively. The first three point patterns
(i.e. u1, u2, u3) are from urban area of 20 × 20 km2 and
the point pattern r1 from rural area is 50 × 50 km2. We can
observe that, the BSs are aggregately distributed on respective
distance scale except a small number of the macrocells in the
area of city A are dispersed in the range of (0,0.3) km distance.
Mostly, the L functions of these areas are far above the PPP
theoretical curve, which in turn verifies the inaccuracy of
the widely-accepted PPP assumption. So we can conclude

FIGURE 10. The dispersion or aggregation examination of large-scale
areas in urban and rural regions. (a) L function of point pattern u1.
(b) L function of point pattern u2. (c) L function of point pattern u3.
(d) L function of point pattern r1.

that the BSs of cellular networks are generally aggregately
distributed in various areas.

Futhermore, after the large scale testification of the clus-
tering property of BS locations, hereinafter we conduct small
scale identification procedure with fine spatial resolution in
probabilistic manner to strengthen this claim. We randomly
select 3000 small regions of 6 × 6 km2 from the whole
coverage areas of the three cities (A, B, C) and 5000 small
regions of 20 × 20 km2 from the whole rural area. For both
kinds of small regions, the anticipated distance is assumed to
be 0 to quarter of the length of region side, namely (0,1.5) km
for the urban regions and (0,5) km for the rural regions. For
each distance scale, we compute the corresponding clustering
probability (i.e. P(L(r) > r)) in the whole region set, as
plotted in Fig. 11-12.

For urban regions, the three probability curves for
microcells, macrocells and all BSs are mostly above 0.65,
indicating that clustering property is significant on small
distance scales as well. Specifically, microcells are more
likely to be aggregated than macrocells, but less than their
combination (all BSs) whose clustering probability curve is
mostly above 0.95. The high probability of clustering effect
on small scales in urban regions verifies the conclusion that
the BSs tend to be aggregately distributed in urban areas.

For rural regions, as observed in Fig. 12, there are more
regions which are dispersed than that are aggregated within
the distance range of (0,2) km. However, within the range
of (2,5) km, the probability of clustering increases with the
distance scale. The disparity between different distance scales
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FIGURE 11. Clustering probability of BSs on different distance scales in
urban regions.

FIGURE 12. Clustering probability of BSs on different distance scales in
rural regions.

reflects the evolving complexity of BS locations in rural
regions.
Remark: Conclusively, to large extent BSs tend to be

aggregately distributed in cellular networks in general.
Specifically, the effect of clustering is more significant in
urban areas than that in rural areas due to the compara-
tively higher traffic demand and more densely distributed
population.

2) POINT PROCESSES’ ACCURACY
TO MODEL BS LOCATIONS
After the description of spatial characteristics of BS locations,
we go further to find the suitable point process models for
different kinds of BSs and geographical regions in proba-
bilistic manner. Again, we employ the randomly selected
3000 urban regions and 5000 rural regions as our test dataset.
For each region in the dataset, we fit the six model candidates
as described in Section III to the real data. Then, for each
fitted model, we repeatedly conduct the same process as in
Section V(A) and estimate the accuracy of the targeted model
by the L function statistic. Consistently, the parameters of
the test are the same as in Section V(A), so we build up a
hypothesis test with significant level 5%. If the L(r) function

curve of real data is out of the envelope bound on any r
distance scale, we claim the inaccuracy of this model for
modeling BS locations in this specific region. In the test set,
we introduce the outage probability of a point process model
which is the ratio of the summed number of the respective
regions with non-accurate modeling to the total number of
the tested regions. As follows, for all pairs of area and model,
we present the outage probability in Table 2.

TABLE 2. Outage probability of different models for modeling
BS locations.

FromTable 2, we can observe that because of the clustering
tendency of BSs deployment, the accuracy of Gibbs processes
is very low. Concretely, for the three urban areas, the outage
probability is approximately 100% for Hardcore point pro-
cess, over 95% for Strauss, and over 90% for Geyer point
process. The average outage probability of the three models
is increasing with their partiality to repulsive property which
coincides with the clustering nature of BS locations in urban
areas.Moreover, the outage probability of PPP is close to 80%
for urban areas although being relatively better in rural area
(55.1%). On the other hand, the accuracy of Neyman-Scott
processes are much better, and the average outage probability
is around 40% for both MCP and TCP in urban areas. These
results further identify the clustering property of BS locations
in urban areas, and particularly verify the inaccuracy of PPP’s
usage for spatial modeling in cellular networks.

Meanwhile, we can also calculate the outage probability
of macrocells and microcells separately for the urban areas
to test the accuracy of different modeling candidates. The
corresponding results are shown in Table 3-4.

TABLE 3. Outage probability of different models for modeling macro
BS locations.

TABLE 4. Outage probability of different models for modeling micro
BS locations.

After the separation of macrocells and microcells,
PPP model has slightly better performance to model
macrocells since the clustering effect is less significant.
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The outage probability of Gibbs processes generally
decreases comparing with the mixed BSs case but is still too
high to be adopted. Surprisingly, the accuracy of Neyman-
Scott processes gets worse which challenges their suitability
of usage in single-tier modeling of macrocells in cellu-
lar networks. Nevertheless, it is still reasonable that either
MCP or TCP is a better choice for modeling macrocells
compared to the other models.

For microcells, the outage probability of PPP model is
extremely high with average value around 99%, which
strongly shakes the common sense of complete randomness
in higher tier BSs deployment in heterogeneous cellular net-
works. Consistently, the outage probability performance of
other models is similar with that in macrocells modeling
which is inevitably too high. Although the cluster processes
MCP and TCP are relatively more accurate than the Gibbs
point process models, they are not qualified to model micro
BS locations anymore, which clearly implies that some other
new models are necessary to characterize the strong cluster-
ing property of micro BSs.

In summary, among the commonly used six spatial models
including inhibitive (repulsive) and attractive (aggregated)
point processes, the Neyman-Scott point processes
(MCP, TCP) have better accuracy in modeling BS locations
in cellular networks. But due to the complexity of actual BS
deployment and geographical diversity, no model is perfectly
qualified to reproduce the real scenario in our analysis.
Surely, these large-scale identification results give us a more
scientific view on this significant topic and suggest us to
further search more accurate and realistic models for spatial
patterns of BSs distribution in cellular networks.

VI. CONCLUSION
In this paper, we conduct the large-scale identification
of spatial modeling of BS locations in cellular networks.
Based on large amount of real data from the on-operating
base stations, our conclusions are given as following with
multi-fold meaning.

Firstly, we investigate the accuracy of PPP’s usage in
modeling BSs spatial distributions, and verify that the com-
plete randomness property of PPP model is not valid in
on-operating well-developed cellular networks. This result
will obviously challenge the rationality of networking
performance characterization based on the overwhelming
PPP assumption in heterogeneous cellular networks.

Secondly, the clustering nature of BSs deployment is
discovered which is complying with the similar nature of
ever-growingly concentrated traffic demand and population
distribution. Furthermore, the diversity between macrocells
and microcells is exhibited indicating that high tiers (micro-
cells) tend to bemore aggregately deployed. Therefore, it may
be necessary to characterize the different tiers by different
models in heterogeneous cellular networks.

At last, after the thorough statistical comparisons based
on large-scale identification, we show that the two typical
clustering models (MCP and TCP) have improved modeling

accuracy but are still not qualified to accurately reproduce
the practical BSs distribution scenario. These identification
results provide us a broader view on the BSs spatial modeling
in cellular networks and point out the overall direction and
necessity to find more accurate and practical models.

Nevertheless, there is still a dilemma between either adopt-
ing a more tractable but less accurate model or employing
a practical but intractable model, which is even more chal-
lenging in the heterogeneous cellular networks. Meanwhile,
more real data from other countries are definitely necessary
to identify the universal BS spatial distribution pattern as
the pattern may vary for different dataset because of the
diversity of geographical and social features across the world.
From these points of view, there are still a lot of future work
on this issue to capture the heterogeneous cellular networks
evolution.
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