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Abstract—This paper proposes a distributed cooperative
framework to improve the energy efficiency of green cellular
networks. Based on the traffic load, neighboring base stations
(BSs) cooperate to optimize the BS switching (sleeping) strategies
so as to maximize the energy saving while guaranteeing users’
minimal service requirements. The inter-BS cooperation is formu-
lated following the principle of ecological self-organization. An in-
teraction graph is defined to capture the network impact of the BS
switching operation. Then, we formulate the problem of energy
saving as a constrained graphical game, where each BS acts as a
game player with the constraint of traffic load. The constrained
graphical game is proved to be an exact constrained potential
game. Furthermore, we prove the existence of a generalized Nash
equilibrium (GNE), and the best GNE coincides with the optimal
solution of total energy consumption minimization. Accordingly,
we design a decentralized iterative algorithm to find the best GNE
(i.e., the global optimum), where only local information exchange
among the neighboring BSs is needed. Theoretical analysis and
simulation results finally illustrate the convergence and optimality
of the proposed algorithm.

Index Terms—Base station sleeping, distributed cooperation,
energy efficiency, potential game, generalized Nash equilibrium,
decentralized algorithm, green cellular networks.

I. INTRODUCTION

THE explosive popularity of smartphones and tablets has
ignited a surging traffic demand for radio access and has

been incurring massive energy consumption [1]–[3], which
results in the depletion of non-renewable energy resources
and causes potential harms to the environment due to CO2

emissions (e.g., global warming) [4]. From an economic
perspective, mobile cellular network operators need to spend
more than 10 billion dollars on electricity to supply the
energy consumption for the network, and the amount keeps
growing at a rapid speed [5], [6]. Accordingly, a new research
area called “green cellular networks” has recently emerged to
enable various energy-efficient cellular networks [7], [8]. The
operators have been seeking ways to improve energy-efficiency
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in all possible dimensions and all components across BSs,
mobile terminals (MTs), and backhaul networks [4].

The focus of this paper is devoted to reducing the energy
consumption in BSs, since BSs consume a significant portion
of the whole energy used in cellular networks, reported to
amount to about 60-80% [4], [9]. Recent research based on the
real temporal traffic trace over one week reports that BSs are
largely underutilized, while the time portion when the traffic
is below 10% of peak during the day is about 30% and 45%
on weekdays and weekends, respectively [8]. However, BSs
with a few or even no communication activities generally
consume more than 90% of their peak energy. Therefore,
instead of turning off just radio transceivers, the operators
probably prefer to putting the underutilized BSs into sleeping
mode and transfer the imposed traffic loads to neighboring
BSs during low traffic periods such as nighttime, which has
substantial potential to reduce the energy squander [4].

Based on the traffic loads fluctuation, dynamically switching
the operation mode of BSs to “on” or “off” is one of the
effective ways to minimize the total energy consumption,
which has been considered as an emerging and challenging
research issue in recent years. To the best of our knowledge,
[10] is the first work to study dynamic BS operations and
proposed a scheme to switch off some BSs under low traf-
fic load. Marsan et al. [9], [11] proposed some switching
strategies for dynamic BS operations based on daily traffic
profile. The problem of energy saving with BS switching is a
well-known combinatorial problem, which has been proven
to be NP-hard [6], [12], [13]. Moreover, solving this kind
of problem generally requires a central controller as well as
the global information (channel state information and traffic
load information), which makes the problem more challenging.
Instead of directly probing into this problem, many works [14],
[15] adopted fixed switching-off patterns and then analyzed
some important quality of service (QoS) metrics (e.g., the call
blocking probability and the channel outage probability). In
addition, some greedy algorithms have been proposed as in
[4], [16]. Son et al. [4] designed a greedy algorithm to achieve
the tradeoff between flow-level delay and energy consumption.
Kim et al. [16] put forward a greedy algorithm to balance
the energy consumption and the revenue in heterogeneous
networks composed of cellular networks and wireless local
area networks (WLANs).

In contrast, distributed schemes for dynamic BS switching
operation [6], [17]–[20] are more favored as they do not
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require a wide-area central controller and may demand less
information exchange and computational complexity [21].
Furthermore, in the newly approved 3GPP LTE specifications,
a flat-system architecture is preferred instead of a tradi-
tional hierarchical structure, whereas self-organization and
self-optimization capabilities are integrated to avoid failure of
single point that often occurs in those centralized controllers
[6], [22], [23]. Therefore, a decentralized scheme for BS
operations should be designed and implemented for the future
cellular communication systems. In [17], Zhou et al. inves-
tigated a distributed scheme implemented by mobile devices.
However, the proposed distributed algorithm would cause a
ping-pong effect. Then, Wong et al. [6] designed a decentral-
ized algorithm implemented by both BSs and mobile devices
to avoid the ping-pong effect. Additionally, Oh et al. [18]
proposed a distributed and dynamic switching-on/off based
energy saving algorithm via a newly introduced notion of
network-impact. Guo et al. [19] took into account a distributed
self-organizing-network (SON) algorithm to perform dynamic
cell expansion through antenna beam tilting. However, all the
existing distributed schemes were generally lacking of solid
theoretic analysis on the convergence, which presents a great
challenge. In [20], the authors developed a actor-critic method
based transfer learning framework for BS energy saving,
where the BS operations under a variant traffic load were
formulated as a Markov decision processes with knowledge
transferring. The convergence of the algorithm was established
via ordinary differential equation and stochastic approximation
theory. Nevertheless, the optimality of the obtained solution
cannot be guaranteed.

In this paper, we propose a distributed cooperative frame-
work to solve the optimal BS sleeping problem in green
cellular networking scenario. The main contributions of our
work are summarized as below:

∙ An interaction graph is defined to capture the network
flow during BSs switching on/off. In order to deal with
the conflicts and interactions among the distributed BS
switching operation, we formulate the energy-saving BS
sleeping problem as a constrained graphical game, where
each BS acts as a game player under the constraint of
system load. Local cooperation is employed to improve
the game efficiency. Specifically, the utility function of
each player is defined to consider its individual energy
consumption and the energy consumption of its neighbors
at the same time.

∙ The constrained graphical game is proved to be an exact
constrained potential game. Then we prove the existence
of the generalized Nash equilibrium (GNE) [32], [33],
and the best GNE coincides with the optimal solution
achieving the total energy consumption minimization.
Furthermore, we design a decentralized iterative algo-
rithm to find the best GNE (i.e., the global optimum),
where only local information exchange is needed among
the neighboring BSs. The convergence and optimality
property are investigated as well.

Although local cooperation is employed in our model, each BS
makes its strategy decision independently and autonomously.

At each time, multiple BSs can switch their modes simul-
taneously. Therefore, the proposed approach is essentially
distributed/decentralized. In contrast, the centralized solution
means global cooperation (i.e., all the BSs cooperate with each
other), which generally requires a central controller as well as
the global information collected. The proposed decentralized
cooperation framework incorporates the advantages of both
the decentralized and centralized approaches. It needs only
local information and lower computational complexity for
strategy decision (advantages of decentralized approaches), but
could achieve the optimal solution (advantage of centralized
approaches).

The remainder of the paper is organized as follows. In
Section II, we present the system model followed by the
problem formulation for the energy-saving BS operations. In
Section III, we formulate a constrained graphical game and
investigate the properties of its GNE points. In Section IV, a
decentralized iterative algorithm is proposed to find the global
optimum of our problem. Section V presents simulation results
and discussions. Conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a heterogeneous cellular network (a mixture
of macrocells and small cells such as microcells, picocells,
and femtocells). Assume that all BSs in the network operate
in open access, i.e., any user is allowed to connect to the
access points (namely BSs) from any tier [15]. The set of
BSs, denoted by 𝒦 = {1, 2, . . . ,𝐾}, lies in a two-dimensional
area 𝒜. Similar to [18], we assume the traffic arrival rate of
a UE located at location 𝑥 follows an independent Poisson
distribution with mean arrival rate 𝜆 (𝑥), and its average
requested file size is an exponentially distributed random
variable with mean 1/𝜇 (𝑥). Then, the traffic load of a UE
located at 𝑥 is defined as 𝛾 (𝑥) = 𝜆 (𝑥)/𝜇 (𝑥). By setting
different arrival rates or file sizes for different users, this model
can capture spatial traffic variability.

Our focus is on downlink transmissions (i.e., from BSs to
user equipments (UEs)) which is a primary usage mode for
the mobile Internet. A UE located at 𝑥 ∈ 𝒜 is associated with
and served by the BS which provides the best signal strength1

[18], i.e.,
𝑘 = argmax

𝑖∈ℬon
𝑃 tx
𝑖 ⋅ 𝑔 (𝑖, 𝑥) , (1)

where ℬon ⊆ 𝒦 denotes the set of active BSs, 𝑃 tx
𝑖 is the

transmission power of BS 𝑖, and 𝑔 (𝑖, 𝑥) is the average channel
gain from BS 𝑖 to the UE at location 𝑥 including the path
loss and other factors such as multipath fading, log-normal
shadowing. The received signal to interference and noise ratio
(SINR) at location 𝑥 from BS 𝑘 is given by

SINR𝑘 (𝑥,ℬon) =
𝑔 (𝑘, 𝑥)𝑃 tx

𝑘∑
𝑖∈ℬon∖{𝑘}

𝑔 (𝑖, 𝑥)𝑃 tx
𝑖 + 𝜎2

, (2)

1It is noted that other user association metrics could also be used. Since the
optimal user association problem has been sufficiently studied in [25]–[27],
our paper simplifies the user association problem and focuses on the optimal
BS sleeping scheme due to the space limitation.
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TABLE I
SUMMATION OF USED NOTATIONS

Notations Description
𝒜 ∈ ℝ2 considered geographic region
𝑥 ∈ 𝒜 location in region 𝒜
𝒦 set of BSs

ℬon ⊆ 𝒦 set of active BSs
𝒜𝑘 coverage of BS 𝑘
𝑃 tx
𝑘 transmission power of BS 𝑘

𝑃𝑘 maximum operational power of BS 𝑘
𝑞𝑘 ∈ [0, 1] the portion of the fixed power consumption for BS 𝑘
𝑔 (𝑘, 𝑥) average channel gain from BS 𝑘 to the UE at location 𝑥
𝜆 (𝑥) average traffic arrival rate at location 𝑥

1/𝜇 (𝑥) average requested file size at location 𝑥
𝛾 (𝑥) traffic load at location 𝑥

𝑅𝑘 (𝑥,ℬon) channel capacity from BS 𝑘 ∈ ℬon to UE at location 𝑥
𝜌𝑘 system load of BS 𝑘
𝜌th
𝑘 system load threshold of BS 𝑘

𝜌𝑘→𝑖 system load transferred from BS 𝑘 to BS 𝑖
𝜙𝑘 power consumption of BS 𝑘
𝐸 total energy expenditure in the network
𝐺𝑟 interaction graph characterizing the relationship among BSs
𝒞𝑘 set of direct neighbors of BS 𝑘
𝒟𝑘 set of interacting neighbors of BS 𝑘
𝒢 formulated BS switching game

𝒮𝑘 = {0, 1} set of available switching strategy of player 𝑘
𝑈𝑘 utility function of player 𝑘
𝑓𝑘 correspondence function for satisfaction of the constraint
𝒮 joint strategy space for all the players

s ∈ 𝒮 strategy profile of all the players
𝒮−𝑘 joint strategy space of all the players excluding 𝑘

s−𝑘 ∈ 𝒮−𝑘 strategy profile of all the players excluding 𝑘
𝒮𝒞𝑘

joint strategy space for player 𝑘’s direct neighbors
s𝒞𝑘

∈ 𝒮𝒞𝑘
strategy profile for player 𝑘’s direct neighbors

𝒮𝒟𝑘
joint strategy space for player 𝑘’s interacting neighbors

s𝒟𝑘
∈ 𝒮𝒟𝑘

strategy profile for player 𝑘’s interacting neighbors
Φ potential function of the game 𝒢
𝛽 learning parameter of the proposed decentralized algorithm

𝜋 (s) stationary distribution of any switching strategy profile s

where 𝜎2 is the noise power. Then, the channel capacity from
BS 𝑘 ∈ ℬon to UE at location 𝑥 is computed by Shannon’s
formula:

𝑅𝑘 (𝑥,ℬon) =𝑊 log2 (1 + SINR𝑘 (𝑥,ℬon)) , (3)

where 𝑊 denotes the channel bandwidth. Then, the system
load density 𝜚𝑘 (𝑥,ℬon) is defined as the fraction of time
required to deliver traffic loads from BS 𝑘 ∈ ℬon to location
𝑥, namely 𝜚𝑘 (𝑥,ℬon) = 𝛾 (𝑥)/𝑅𝑘 (𝑥,ℬon). Denoting 𝒜𝑘 as
BS 𝑘’s coverage (i.e., the set of UEs’ locations served by BS
𝑘), the system load of BS 𝑘 is defined as the fraction of time
to serve the total traffic load in its coverage, i.e.,

𝜌𝑘 (𝑥,ℬon) =

∫
𝒜𝑘

𝛾 (𝑥)

𝑅𝑘 (𝑥,ℬon)
𝑑𝑥. (4)

For better reading, Table I summarizes the used notations in
this paper.

B. Problem Formulation

1) The Cost Function of Energy: We adopt a general BS
energy consumption model [4] composed of two types of
power consumptions: fixed power consumption and adaptive
power consumption which is proportional to BS’s utilization.

𝜙𝑘 =

{
(1− 𝑞𝑘) 𝜌𝑘𝑃𝑘 + 𝑞𝑘𝑃𝑘, 𝑘 ∈ ℬon

0, 𝑘 /∈ ℬon
(5)

where 𝑃𝑘 is the maximum operational power of BS 𝑘 in-
cluding power consumptions for transmit antennas as well
as power amplifiers, cooling equipment etc., and 𝑞𝑘 ∈ [0, 1]
is the portion of the fixed power consumption for BS 𝑘.
When 𝑞𝑘 = 0, BSs are assumed to consist of only energy-
proportional components. Specifically, such BSs would ideally
consume no power when idle, and gradually consume more
power as the activity level (reflected by 𝜌𝑘) increases. This
type of BSs is referred to as energy-proportional BSs, which
is still far from reality because several components in the BSs
dissipate standby power while even being inactive. On the
other hand, the type of BSs, which consumes the fixed power
in spite of its activity level unless they are totally turned off,
i.e., 𝑞𝑘 > 0, will be referred to as non-energy-proportional
BS. In particular, when 𝑞𝑘 = 1, this model can also capture a
constant energy consumption model, which is widely applied
in many works [4], [8]–[10], [17], [18].

2) Energy Saving Problem Formulation: In this paper, we
aim at proposing a BS switching algorithm that minimizes
the total energy expenditure in cellular networks. In general,
our energy saving problem considering the BS switching
operations can be formulated as:

min
ℬon

𝐸 (ℬon) =
∑
𝑘∈𝒦

𝜙𝑘, (6a)

s.t. 0 ≤ 𝜌𝑘 ≤ 𝜌th
𝑘 ,∀𝑘 ∈ 𝒦, (6b)

ℬon ∕= ∅. (6c)

Similar to [18], we introduce a system load threshold 𝜌th
𝑘 ≤ 1

on the system load to balance the trade-off between the
energy efficiency and the system stability/reliability, as shown
in the constraint of the above problem formulation (6). In
specific, with a low threshold value, BSs would operate in a
conservative manner with a low system load on average (i.e.,
large spare capacity). Consequently, users would experience
less delay. Moreover, less call dropping probability can be
expected since the BSs become more robust to bursty traffic
arrivals. In contrast, with a high threshold value close to one
(i.e., a loose threshold), we can obtain more energy saving at
the cost of slight performance reduction.

Remark 1. The energy consumption minimization problem
above aims to determine the set of active BSs subject to
the system load constraint, which can be proved to be NP-
complete by reducing from a vertex cover problem [12],
[18]. Finding an optimal solution to this problem faces the
following two difficulties: First, it requires high computational
complexity to find the optimal active BS set among 2𝐾 on/off
combinations, especially when the number of BSs is large;
Second, it needs a centralized controller which collects the
channel state information and traffic load information from
all BSs in practice.

It is worth noting that the existing works [4], [16] only
propose some greedy heuristic algorithms to find a feasible
solution to the problem (6), and there is no theoretic analysis
on the optimality property. Moreover, the proposed algorithms
require the information from all involved BSs. Then, Oh et al.
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Fig. 1. BS cooperation for energy saving.

Fig. 2. Distributed network model.

[18] aims to reduce the information exchange by designing dis-
tributed algorithms. However, no optimality of the algorithm
can be guaranteed.

III. LOCAL COOPERATION GAME FOR ENERGY-SAVING
BS SWITCHING

In this section, we discuss on the distributed optimization
of the above problem (6) by using game theory [35]–[43],
which is a powerful tool to analyze the interactions between
distributed decision makers and thereby improve the perfor-
mance of decentralized networking/framework.

A. Local Interaction and Cooperative BS Sleeping Mechanism

When one BS is turned off, apparently, this would result
in an increase in the system load of neighboring BSs. This is
because those UEs originally associated with the switched-off
BS need to be transferred to its neighbors (as shown in Fig. 1),
even they may experience lower service rates 𝑅𝑘 (𝑥,ℬon) due
to farther distances between the UEs and their new serving
BSs. The neighboring BSs (BSs 2-7) are serving as acceptors
for BS 1 by cooperatively sharing its traffic (as shown by the
arrows) and allowing BS 1 to turn into sleeping mode for
saving energy. At the same time, for supporting the extended
coverage zones, transmission power of these acceptors (BSs
2-7) should be adjusted.

The network model is presented in Fig. 2 to capture the
local interaction among the neighboring BSs. The solid lines
between any two BSs denote the interaction between them.
When BS 1 and BS 10 are switched off, the local interaction
domain of BS 1 and BS 10 are illustrated by the dashed
lines. For instance, as described in the figure, BS 10 and
its neighboring BSs 11-14 are interacting via their own local
processes. Here, BS 10 may have no knowledge on the
behavior of other BSs beyond its own domain (i.e., BSs 1-9).
However, the neighboring BSs of BS 10 are also interacting
with their respective neighboring BSs, and thus, BS 10 is
directly and indirectly influencing the behavior of all the other
BSs in the system. In turn, local behaviors of the BSs would
generate the global behavioral pattern of the whole system.
This type of interaction follows the principle of ecological
self-organization [27]–[29].

Definition 1: An Interaction Graph is defined by 𝐺𝑟 =
(𝒦, 𝜀), where 𝒦 is the set of vertices (BSs as players), 𝜀 is
the set of edges. We say BSs 𝑗 and 𝑘 are direct neighbors if
they are connected by an edge, i.e., (𝑗, 𝑘) ∈ 𝜀. Moreover, we
define 𝒞𝑘 as the set of BS 𝑘’s neighbors, 𝒞𝑘 = {𝑗 : (𝑗, 𝑘) ∈ 𝜀}.
Notably, 𝑗 ∈ 𝒞𝑘 ⇔ 𝑘 ∈ 𝒞𝑗 .

B. Graphical Game Model

Then, the graphical game model is formally denoted by 𝒢 =[
𝐺𝑟, {𝒮𝑘}𝑘∈𝒦 , {𝑈𝑘}𝑘∈𝒦 , {𝑓𝑘}𝑘∈𝒦

]
, where 𝒮𝑘 = {0, 1} (0

denotes “off”, 1 denotes “on”) is the set of available switching
strategy for player (BS) 𝑘, 𝑈𝑘 is the utility function of player
𝑘 to evaluate the energy consumption, and 𝑓𝑘 represents a
correspondence function for satisfaction of the constraint [32].
An strategy profile of all the players is a vector, denoted by
s = (𝑠1, 𝑠2, . . . , 𝑠𝐾) ∈ 𝒮, where 𝒮 = 𝒮1 ⊗ 𝒮2 ⊗ ⋅ ⋅ ⋅ ⊗ 𝒮𝐾
represents the joint strategy space for all the players. Besides,
the strategy profile of all the players excluding 𝑘 is denoted
by s−𝑘 = (𝑠1, . . . , 𝑠𝑘−1, 𝑠𝑘+1 . . . , 𝑠𝐾) ∈ 𝒮−𝑘, where 𝒮−𝑘 =
𝒮1⊗⋅ ⋅ ⋅⊗𝒮𝑘−1⊗𝒮𝑘+1⊗⋅ ⋅ ⋅⊗𝒮𝐾 . Additionally, the strategy
profile of player 𝑘’s neighbors is denoted by s𝒞𝑘

∈ 𝒮𝒞𝑘
, where

𝒮𝒞𝑘
= ⊗𝑗∈𝒞𝑘

𝒮𝑗 represents the joint strategy space for player
𝑘’s direct neighbors.

Based on the interaction graph, the energy consumption of
each player (say player 𝑘) only depends on the strategies of it-
self and its neighbors, and thus can be denoted by 𝜙𝑘 (𝑠𝑘, s𝒞𝑘

).
Moreover, because 1) the neighboring BSs connected though
high-speed wireline can easily communicate with each other
(e.g., over X2 interface in LTE), 2) efficiency of the game can
be greatly improved by local cooperation, we design the utility
function as

𝑈𝑘 (𝑠𝑘, s𝒟𝑘
) = −

(
𝜙𝑘 (𝑠𝑘, s𝒞𝑘

) +
∑
𝑖∈𝒞𝑘

𝜙𝑖 (𝑠𝑖, s𝒞𝑖)

)
, (7)

where 𝒟𝑘 = 𝒞𝑘
∪

𝑖∈𝒞𝑘
𝒞𝑖 includes player 𝑘’s direct neighbors

𝒞𝑘 as well as indirect neighbors
∪

𝑖∈𝒞𝑘
𝒞𝑖. Accordingly, s𝒟𝑘

denotes the strategy profile of player 𝑘’s interacting neigh-
bors2, and 𝒮𝒟𝑘

represents their joint strategy space. It is worth

2To avoid confusion, we refer to the direct and indirect neighbors 𝒟𝑘 as
interacting neighbors in the remainder of this paper.
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noting that the above defined utility function is comprised of
two parts: the individual energy consumption of player 𝑘 and
the aggregate energy consumption of its direct neighbors. In
other words, when a player makes a decision, it should not
only consider itself but also considers its direct neighbors.

In our game model, 𝑓𝑘 : 𝒮𝒟𝑘
→ ℵ𝑘 is a correspondence

which determines the set of satisfied actions of player 𝑘
given the actions played by player 𝑘’s interacting neighbors.
According to the local interaction rule, the system load of
player 𝑘 can be denoted by 𝜌𝑘 (𝑠𝑘, s𝒞𝑘

), and player 𝑘’s
switching strategy can affect the system load of itself and its
neighbors. In order to guarantee the system load below the
threshold 𝜌th

𝑖 , we define the correspondence by 𝑓𝑘 (s𝒟𝑘
) ={

𝑠𝑘 ∈ 𝒮𝑘 : 0 ≤ 𝜌𝑖 (𝑠𝑖, s𝒞𝑖) ≤ 𝜌th
𝑖 ,∀𝑖 ∈ 𝒞𝑘 ∪ {𝑘}

}
. Obviously,

ℵ𝑘 = 𝑓𝑘 (s𝒟𝑘
) is a subset of the set 𝒮𝑘, i.e., ℵ𝑘 ⊆ 𝒮𝑘.

Then, the BS operation game with local cooperation is
expressed as

(𝒢) : max
𝑠𝑘∈𝑓𝑘(s𝒟𝑘)

𝑈𝑘 (𝑠𝑘, s𝒟𝑘
) ,∀𝑘 ∈ 𝒦. (8)

The GNE under pure strategy in games of normal form with
constrained set of actions, as introduced by Debreu in [30]
and later by Rosen in [31], can be defined as follows.

Definition 2 (Generalized Nash equilibrium (GNE)): A BS
operation profile s∗ = (𝑠∗1, 𝑠

∗
2, . . . , 𝑠

∗
𝐾) ∈ 𝒮 is a pure strategy

GNE of the game 𝒢 if and only if

∀𝑘 ∈ 𝒦, 𝑠∗𝑘 ∈ 𝑓𝑘
(
s∗𝒟𝑘

)
, (9a)

∀𝑠𝑘 ∈ 𝑓𝑘
(
s∗𝒟𝑘

)
, 𝑈𝑘

(
𝑠∗𝑘, s

∗
𝒟𝑘

) ≥ 𝑈𝑘

(
𝑠𝑘, s

∗
𝒟𝑘

)
. (9b)

Let the set ℱ𝑘 ⊆ 𝒮 be the graph of the correspondence 𝑓𝑘,
i.e., ℱ𝑘 = {(𝑠𝑘, s−𝑘) : 𝑠𝑘 ∈ 𝑓𝑘 (s𝒟𝑘

)}. The set ℱ𝑘 determines
the action profiles which can be observed as outcomes of the
game 𝒢, when only player 𝑘 is allowed to play actions belong-
ing to the set 𝑓𝑘 (s𝒟𝑘

) given any action profile s𝒟𝑘
. Then,

ℱ̂ =
∪

𝑘∈𝒦 ℱ𝑘 contains all possible unilateral deviations,
while ℱ =

∩
𝑘∈𝒦 ℱ𝑘 corresponds to the set of all possible

(feasible) outcomes of the game 𝒢. Notably, the definition of
ℱ coincides with the constraint (9a) for the GNE.

Definition 3 (Exact Constrained Potential Game (ECPG)):
Any game of normal form with constrained set of actions
𝒢 =

[
𝐺𝑟, {𝒮𝑘}𝑘∈𝒦 , {𝑈𝑘}𝑘∈𝒦 , {𝑓𝑘}𝑘∈𝒦

]
is an ECPG if there

exists a function Φ : ℱ̂ → ℝ such that for all s ∈ ℱ̂ , it holds
that, ∀𝑘 ∈ 𝒦, and ∀𝑠′𝑘 ∈ 𝑓𝑘 (s𝒟𝑘

),

𝑈𝑘(𝑠
′
𝑘, s𝒟𝑘

)−𝑈𝑘(𝑠𝑘, s𝒟𝑘
) = Φ(𝑠′𝑘, s−𝑘)−Φ(𝑠𝑘, s−𝑘) . (10)

The function Φ is called an exact potential function for the
constrained game 𝒢.

C. Analysis of GNE

Theorem 1. The BS operation game 𝒢 is an exact constrained
potential game.

Proof: The following steps are inspired by the similar
proof given in [36], [37].

First we construct a potential function as

Φ(𝑠𝑘, s−𝑘) = −
∑
𝑘∈𝒦

𝜙𝑘 (𝑠𝑘, s−𝑘), (11)

which is equal to the negative of the total BS energy con-
sumption 𝐸 as defined in Eq. (6a). Since 𝜙𝑘 (𝑠𝑘, s−𝑘) =
𝜙𝑘 (𝑠𝑘, s𝒞𝑘

) due to the local interaction rule, we have

Φ (𝑠𝑘, s−𝑘) = −
∑
𝑘∈𝒦

𝜙𝑘 (𝑠𝑘, s𝒞𝑘
). (12)

Suppose that an arbitrary player, say 𝑘, unilaterally changes
its strategy from 𝑠𝑘 to 𝑠′𝑘 ∈ 𝑓𝑘 (s𝒟𝑘

), then the change of the
potential function caused by this unilateral change is given by

Φ(𝑠′𝑘, s−𝑘)− Φ(𝑠𝑘, s−𝑘)

= 𝜙𝑘(𝑠𝑘, s𝒞𝑘
)−𝜙𝑘(𝑠′𝑘, s𝒞𝑘

)+
∑
𝑖∈𝒞𝑘

(𝜙𝑖(𝑠𝑖, s𝒞𝑖)−𝜙𝑖(𝑠𝑖, s′𝒞𝑖))

+
∑

𝑖∈𝒦∖{𝒞𝑘∪{𝑘}}
(𝜙𝑖 (𝑠𝑖, s𝒞𝑖)− 𝜙𝑖 (𝑠𝑖, s′𝒞𝑖)),

(13)
where 𝜙𝑖 (𝑠𝑖, s

′𝒞𝑖) denotes the consumed energy of player 𝑖
after player 𝑘 unilaterally changing the action. Since player
𝑘’s action only affects the energy consumption of itself and
its neighbors, we have:

𝜙𝑖 (𝑠𝑖, s
′𝒞𝑖) = 𝜙𝑖 (𝑠𝑖, s𝒞𝑖) , ∀𝑖 ∈ 𝒦 ∖ {𝒞𝑘 ∪ {𝑘}} . (14)

On the other hand, the change of individual utility function
caused by this unilaterally change is given by

𝑈𝑘 (𝑠
′
𝑘, s𝒟𝑘

)− 𝑈𝑘 (𝑠𝑘, s𝒟𝑘
)

= 𝜙𝑘(𝑠𝑘, s𝒞𝑘
)−𝜙𝑘(𝑠′𝑘, s𝒞𝑘

)+
∑
𝑖∈𝒞𝑘

(𝜙𝑖(𝑠𝑖, s𝒞𝑖)−𝜙𝑖(𝑠𝑖, s′𝒞𝑖)).

(15)
Then, according to (13)-(15), we can get

𝑈𝑘(𝑠
′
𝑘, s𝒟𝑘

)−𝑈𝑘(𝑠𝑘, s𝒟𝑘
) = Φ(𝑠′𝑘, s−𝑘)−Φ(𝑠𝑘, s−𝑘) . (16)

That is, the change in individual utility function caused by
any player’s unilateral deviation is equal to the change in the
potential function. Thus, according to the definition, 𝒢 is an
exact constrained potential game. This concludes the proof.

Before we continue, it is necessary to state that not all the
properties of potential games [44] hold for the constrained po-
tential games. For instance, not all exact constrained potential
games have an equilibrium, since unilateral deviations of a
set of players from any action profile s ∈ ℱ might lead to
action profiles which do not belong to ℱ (refer to [32] for a
comprehensive review on this problem). In the following, we
analyze the existence and optimality of the equilibrium in our
BS operation game.

Theorem 2. The exact constrained potential game 𝒢 =[
𝐺𝑟, {𝒮𝑘}𝑘∈𝒦 , {𝑈𝑘}𝑘∈𝒦 , {𝑓𝑘}𝑘∈𝒦

]
with potential function

Φ : ℱ̂ → ℝ, has at least one GNE in pure strategy, if the traffic
is under-loaded when the BSs are all on, i.e., 0 ≤ 𝜌𝑘 ≤ 𝜌th,
∀𝑘 ∈ 𝒦.

Proof: By assumption, s0 = (𝑠𝑘, s−𝑘) = (1, 1, . . . , 1) is
a feasible solution, i.e., s0 ∈ ℱ . Thus, there exists at least one
feasible outcome for the game.

Now, ∀𝑘 ∈ 𝒦, any unilateral deviation of player 𝑘 from
s0 leads to an action profile s′ = (𝑠′𝑘, s−𝑘) ∈ ℱ𝑘, i.e.,
𝑠′𝑘 ∈ 𝑓𝑘 (s𝒟𝑘

). Because player 𝑘’s switching strategy can
only affect the system load of itself and its neighbors, and
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the correspondence function 𝑓𝑘 is defined to guarantee that the
system load of player 𝑘 and its neighbors satisfy the constraint,
the unilateral deviation from a feasible action profile s0 is also
a feasible action profile. Thus, s1 = (𝑠′𝑘, s−𝑘) ∈ ℱ . Moreover,
since 𝑠′𝑘 ∈ 𝑓𝑘 (s𝒟𝑘

), according to Theorem 1, we have

𝑈𝑘 (𝑠
′
𝑘, s𝒟𝑘

)− 𝑈𝑘 (𝑠𝑘, s𝒟𝑘
) = Φ (𝑠′𝑘, s−𝑘)− Φ(𝑠𝑘, s−𝑘) .

(17)
Therefore, 𝑈𝑘 (𝑠

′
𝑘, s𝒟𝑘

) > 𝑈𝑘 (𝑠𝑘, s𝒟𝑘
) results in

Φ(𝑠′𝑘, s−𝑘) > Φ(𝑠𝑘, s−𝑘). Furthermore, due to the
nature of game, player 𝑘 unilaterally deviates its
strategy from the original strategy 𝑠𝑘 to 𝑠′𝑘 only
when 𝑈𝑘 (𝑠

′
𝑘, s𝒟𝑘

) > 𝑈𝑘 (𝑠𝑘, s𝒟𝑘
). Hence, we have

Φ(𝑠′𝑘, s−𝑘) > Φ (𝑠𝑘, s−𝑘), i.e., Φ
(
s1
)
> Φ

(
s0
)
. In this way,

unilateral deviations of all the players would achieve such
a feasible improvement path

{
s0, s1, s2, . . .

} ⊆ ℱ , which
conforms to Φ

(
s0
)
< Φ

(
s1
)
< Φ

(
s2
)
< ⋅ ⋅ ⋅ .

Besides, because the number of feasible strategy profiles
is finite (∣ℱ∣ ≤ 2∣𝒦∣), the above improvement path must
be finite and terminate in one pure strategy GNE point s∗,
where no player could unilaterally deviate to increase its utility
(decrease its energy consumption), still keeping the system
load constraint satisfied. Moreover, each GNE maximizes the
potential function Φ in the feasible region, either locally or
globally [44].

Remark 2. We assume in the proof of Theorem 2 that the traf-
fic is under-loaded when the BSs are all on, i.e., 0 ≤ 𝜌𝑘 ≤ 𝜌th

𝑘 ,
∀𝑘 ∈ 𝒦. This is a very reasonable assumption, since the
motivation for us to perform energy-saving BS sleeping is
based on the fact that BSs are largely underutilized. Therefore,
the assumption always holds.

Theorem 3. For the formulated exact constrained potential
games 𝒢, each GNE locally or globally minimizes the total
BS energy consumption 𝐸 under the system load constraint,
and the best GNE is the global optimum for minimizing the
total BS energy consumption 𝐸.

Proof: According to the definition of GNE, for an arbi-
trary GNE s∗, we have 𝑠∗𝑘 ∈ 𝑓𝑘

(
s∗𝒟𝑘

)
,∀𝑘 ∈ 𝒦. Then, based

on the definition of correspondence 𝑓𝑘, we know that all the
GNE are in the feasible region, i.e., 0 ≤ 𝜌𝑘 ≤ 𝜌th

𝑘 , ∀𝑘 ∈ 𝒦.
Besides, we have proved in Theorem 2 that all GNE are the

maximizers of the potential function Φ in the feasible region,
either locally or globally. Furthermore, according to Eq. (6a)
and Eq. (11), the potential function Φ is exactly equal to the
negative of the total BS energy consumption 𝐸. That is, max-
imizing the potential function Φ is equivalent to minimizing
the total BS energy consumption 𝐸. Therefore, each GNE of
the game 𝒢 locally or globally minimizes the total BS energy
consumption 𝐸 under the system load constraint, and the best
GNE is the global optimum for minimizing the total BS energy
consumption 𝐸.

IV. DECENTRALIZED ITERATIVE ALGORITHM FOR
ACHIEVING GLOBALLY OPTIMAL SOLUTION

As we have proved in section III, the distributed implemen-
tation by our formulated game model can obtain very attractive

equilibrium solutions that minimize the network energy con-
sumption. In this section, we propose a decentralized iterative
algorithm to find the optimal solution to the BS sleeping
problem in (6). According to Theorem 3, in order to achieve
the global optimum, we only need to develop an effective
algorithm to obtain the best GNE.

A. Algorithm Description

Let 𝑠𝑘 (𝑡) be the switching strategy of BS 𝑘 at iteration 𝑡,
respectively, for 𝑘 = 1, 2, . . . ,𝐾 and 𝑡 ≥ 0. The proposed
procedure is described in Algorithm 1 and the schematic
diagram is shown in Fig. 3.

Algorithm 1: Decentralized BS Sleeping Algorithm

Initialization: At the initial time 𝑡 = 0, let each BS on
operating, i.e., 𝑠𝑘 (0) = 1, ∀𝑘 ∈ 𝒦.

Loop for 𝑡 = 0, 1, 2, . . .

1) Player selection: A set of non-interacting BSs, ℳ (𝑡),
is randomly selected in an distributed and autonomous
manner3. Then, the selected BSs calculate their current
utility value 𝑈𝑘 (𝑡) by using Eq. (7) through necessary
communication with neighboring BSs.

2) Switching Strategy Exploration: Each BS 𝑘 ∈ ℳ (𝑡)
independently and autonomously explores a new switch-
ing strategy 𝑠𝑘 (𝑡) ∈ {0, 1}, and 𝑠𝑘 (𝑡) ∕= 𝑠𝑘 (𝑡). If
𝑠𝑘 (𝑡) = 0 (to be switched off), check whether 𝑠𝑘 (𝑡)
satisfies the following feasibility constraint:∫

𝒜𝑖

𝛾 (𝑥)

𝑅𝑖 (𝑥)
𝑑𝑥︸ ︷︷ ︸

𝜌𝑖

+

∫
𝒜𝑘→𝑖

𝛾 (𝑥)

𝑅𝑖 (𝑥)
𝑑𝑥︸ ︷︷ ︸

𝜌𝑘→𝑖

≤ 𝜌th
𝑖 ,∀𝑖 ∈ 𝒞𝑘 ∩ ℬon,

(18)
where 𝒜𝑘→𝑖 is the coverage of UEs who will be handed
over from BS 𝑘 to the neighboring (on-operation) BS
𝑖 when BS 𝑘 is switched off. 𝜌𝑖 is the original system
load defined as the internal system load of BS 𝑖, and the
external system load increment 𝜌𝑘→𝑖 is the system load
transferred from BS 𝑘 to BS 𝑖 due to the neighboring BS’s
switching off. Accordingly, if 𝑠𝑘 (𝑡) = 1 (to be switched
on), we should check the following feasibility constraint:∑

𝑖∈𝒞𝑘∩ℬon

∫
𝒜𝑖→𝑘

𝛾 (𝑥)

𝑅𝑘 (𝑥)
𝑑𝑥︸ ︷︷ ︸

𝜌𝑖→𝑘

≤ 𝜌th
𝑘 . (19)

If the above constraints hold4, BS 𝑘 adheres to its
selection 𝑠𝑘 (𝑡) in an estimation period and then its neigh-
bors (including BS 𝑘) calculate their respective energy
consumption according to Eq. (5). Then, the selected BS
𝑘 ∈ ℳ (𝑡) computes its explored utility value 𝑈̂𝑘 (𝑡) by
Eq. (7) through the communication with its neighbors.

3The selection of the non-interacting BSs set can be implemented through
contention mechanisms over a common control channel or a priority-based
method in [34], which is omitted here for brevity.

4If the constraints does not hold, it means BS 𝑘 cannot be switched on/off.
Therefore, BS 𝑘 will not perform any operation.
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Iteration t-1 Iteration t Iteration t+1

Select a feasible action
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Compute the current
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The exploration period,

measure the utility

Compute the action

updating probability ( )Pr 1t +( )ˆ
k

U t

Fig. 3. The schematic diagram of the proposed decentralized iterative
algorithm.

3) Switching Strategy Updating: BS 𝑘 ∈ ℳ (𝑡) updates
its switching strategy according to the following rule:⎧⎨⎩

Pr (𝑠𝑘 (𝑡+ 1) = 𝑠𝑘 (𝑡)) =
exp

{
𝛽𝑈̂𝑘 (𝑡)

}
Ψ

Pr (𝑠𝑘 (𝑡+ 1) = 𝑠𝑘 (𝑡)) =
exp {𝛽𝑈𝑘 (𝑡)}

Ψ
,

(20)

where Pr (⋅) denotes the probability of the event in (⋅),
Ψ = exp {𝛽𝑈𝑘 (𝑡)}+exp

{
𝛽𝑈̂𝑘 (𝑡)

}
, and 𝛽 is a learning

parameter. Meanwhile, all other BSs keep their switch-
ing strategies unchanged, i.e., 𝑠𝑖 (𝑡+ 1) = 𝑠𝑖 (𝑡) ,∀𝑖 ∈
𝒦∖ℳ (𝑡). Then, the UEs originally associated with the
switched-off BSs are transferred to the neighbors accord-
ing to the received radio signal strength.

End loop until the maximal number of iterations is reached.

The proposed decentralized iterative algorithm is inspired by
the work of probabilistic decision making in [45], and lately
this specific work has been further developed and applied to
wireless mesh networks [46], [47]. In step 3 of the proposed
algorithm, the probability of strategy updating is given by
the Boltzmann distribution [48], [49], and the parameter 𝛽 is
analogous to the inverse of temperature in simulated annealing.
When a BS explores a strategy better than its current strategy,
the Boltzmann distribution will assign a higher probability
to update its switching strategy; otherwise, the BS is more
willing to remain the current strategy. We introduce such
a probabilistic strategy updating into our energy-saving BS
operation problem in order to escape the trap from sub-optimal
GNE (local minima) and finally converge to the best GNE
(globally optimal solution).

In the proposed algorithm, the interacting neighbors are not
allowed to simultaneously change their switching strategies
in order to avoid the ping-pong effect, as shown in step
1. Moreover, BSs do not really switch their modes in each
iteration until the algorithm converges so as to reduce the
switching cost. Each switched-off BS transfers its UEs to
their neighbors, which cooperatively share its traffic. Since
neighboring BSs are connected though high-speed wireline,
communication among them is very easy. Neighboring BSs
are cooperated by exchanging information directly and locally.
By exchanging necessary information with neighboring BSs,

2
s

0
s

3
s s

F1
s

. . .

Fig. 4. Markov chain describing the proposed decentralized iterative
algorithm.

each BS knows the average channel gain 𝑔(𝑘, 𝑥) from all BSs
to each UE, and the transmission power of each BS 𝑃 tx

𝑘 . Thus,
each BS can compute the updated service rate 𝑅𝑘 as Eq. (3).
Besides, the mean arrival rate 𝜆 (𝑥) and the average requested
file size 1/𝜇 (𝑥) can be easily obtained by each BS. Thus,
each BS can calculate its system load by Eq. (4). Also, the
energy consumption of each BS can be obtained by Eq. (5).

B. Stability and Optimality Analysis

Theorem 4. If all the BSs adhere to the proposed decen-
tralized iterative algorithm, the unique stationary distribution
𝜋 (s) of any switching strategy profile s, is given by:

𝜋 (s) =
exp {𝛽Φ(s)}∑
ŝ∈𝒮 exp {𝛽Φ(ŝ)} , (21)

where 𝒮 is the space of switching strategy profile for all the
BSs, Φ is the potential function given in Eq. (11).

Proof: Denote all the BSs’ on/off state vector at the 𝑡-th
iteration as s (𝑡) = (𝑠1 (𝑡) , 𝑠2 (𝑡) , . . . , 𝑠𝐾 (𝑡)). Notably, s (𝑡)
is a discrete time Markov process, as shown in Fig. 4. All
the feasible solutions

{
s0, s1, . . . , s∣ℱ∣} constitute the states

of the Markov chain. The initial state s0 (i.e., all BSs on-
operation) communicates with any other state in the Markov
chain. Thus, any two states communicate with each other.
Moreover, according to Eq. (20), any state possesses a positive
probability to keep unmoved. Therefore, the Markov chain is
irreducible and aperiodic [52]. Accordingly, it has a unique
stationary distribution which satisfies the following balanced
equation: ∑

𝑋∈𝒮 𝜋 (𝑋) Pr (𝑌 ∣𝑋) = 𝜋 (𝑌 ) , (22)

where 𝑋,𝑌 ∈ 𝒮 denote any two arbitrary network states, and
Pr (𝑌 ∣𝑋) is the transition probability from 𝑋 to 𝑌 .

Similar to [37], [45], [51], in the following part, we will
show that the stationary distribution given by Eq. (21) satisfies
the above balanced equation. For the convenience of analysis,
we denote 𝑋 by (𝑠1, 𝑠2, . . . , 𝑠𝐾), where the iteration index 𝑡 is
omitted. In the proposed algorithm, only non-interacting BSs
are allowed to update their strategies simultaneously at each
iteration, which leads to the change of corresponding elements
in 𝑋 . With no loss of generality, we assume that the set of non-
interacting BSs which simultaneously update their strategies
is ℳ = {1, 2, . . . , ∣ℳ∣}, where ∣ℳ∣ represents the number
of ℳ’s elements. Therefore, the network state 𝑋 transfers to
𝑌 =

(
𝑠′1, 𝑠

′
2, . . . , 𝑠

′
∣ℳ∣, 𝑠∣ℳ∣+1, 𝑠∣ℳ∣+2, . . . , 𝑠𝐾

)
. We assume

the probability of ℳ chosen as the set of updating players is
𝜃, and then we can get the following equation:
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𝜋 (𝑋) Pr (𝑌 ∣𝑋) =
exp {𝛽Φ(𝑋)}∑
ŝ∈𝒮 exp {𝛽Φ(ŝ)} × 𝜃

×
∏
𝑖∈ℳ

exp {𝛽𝑈𝑖 (𝑠
′
𝑖, s𝒟𝑖)}

exp {𝛽𝑈𝑖 (𝑠𝑖, s𝒟𝑖)}+ exp {𝛽𝑈𝑖 (𝑠′𝑖, s𝒟𝑖)}
.

(23)

Denoting 𝛼 as

𝛼 =
𝜃∑

ŝ∈𝒮 exp {𝛽Φ(ŝ)}
×
∏
𝑖∈ℳ

1

exp {𝛽𝑈𝑖 (𝑠𝑖, s𝒟𝑖)}+ exp {𝛽𝑈𝑖 (𝑠′𝑖, s𝒟𝑖)}
,

(24)

we obtain

𝜋 (𝑋) Pr (𝑌 ∣𝑋)

= 𝛼 exp {𝛽Φ(𝑋)}
∏
𝑖∈ℳ

exp {𝛽𝑈𝑖 (𝑠
′
𝑖, s𝒟𝑖)}

= 𝛼 exp

{
𝛽Φ(𝑋) + 𝛽

∑
𝑖∈ℳ

𝑈𝑖 (𝑠
′
𝑖, s𝒟𝑖)

}
.

(25)

According to the symmetry property, we can also derive

𝜋 (𝑌 ) Pr (𝑋∣𝑌 ) = 𝛼 exp

{
𝛽Φ(𝑌 ) + 𝛽

∑
𝑖∈ℳ

𝑈𝑖 (𝑠𝑖, s𝒟𝑖)

}
.

(26)
Construct a sequence as 𝑋0, 𝑋1, 𝑋2, . . . , 𝑋∣ℳ∣, where

𝑋0 = 𝑋 and 𝑋𝑖 = (𝑠′1, 𝑠
′
2, . . . , 𝑠

′
𝑖, 𝑠𝑖+1, 𝑠𝑖+2, . . . , 𝑠𝐾),

∀𝑖 ∈ℳ. Notably, 𝑌 = 𝑋∣ℳ∣. Then, we have

Φ(𝑌 )− Φ(𝑋) = Φ
(
𝑋∣ℳ∣

)− Φ(𝑋0)

=
∑
𝑖∈ℳ

(Φ (𝑋𝑖)− Φ(𝑋𝑖−1)) =
∑
𝑖∈ℳ

(𝑈𝑖 (𝑋𝑖)− 𝑈𝑖 (𝑋𝑖−1)).

(27)
Besides, BSs in ℳ are not mutually interacting neighbors,
i.e., ∀𝑖, 𝑗 ∈ℳ, 𝑖 /∈ 𝒟𝑗 . Thus, the following equation holds:

𝑈𝑖 (𝑋𝑖)− 𝑈𝑖 (𝑋𝑖−1) = 𝑈𝑖 (𝑠
′
𝑖, s𝒟𝑖)−𝑈𝑖 (𝑠𝑖, s𝒟𝑖) . (28)

Then, according to Eqs. (27) and (28), we can get

Φ(𝑌 )− Φ(𝑋) =
∑
𝑖∈ℳ

(𝑈𝑖 (𝑠
′
𝑖, s𝒟𝑖)− 𝑈𝑖 (𝑠𝑖, s𝒟𝑖)). (29)

Now, applying Eqs. (25) and (26), we can derive the following
balanced equation:

𝜋 (𝑋) Pr (𝑌 ∣𝑋) = 𝜋 (𝑌 ) Pr (𝑋∣𝑌 ) . (30)

Therefore, we have∑
𝑋∈𝒮

𝜋 (𝑋) Pr (𝑌 ∣𝑋) =
∑
𝑋∈𝒮

𝜋 (𝑌 ) Pr (𝑋∣𝑌 )

= 𝜋 (𝑌 )
∑
𝑋∈𝒮

Pr (𝑋∣𝑌 ) = 𝜋 (𝑌 ) ,
(31)

which means the distribution given by Eq. (21) satisfies the
balanced stationary equation (22) of the Markov process s (𝑡).
Moreover, the stationary distribution has been proved to be
unique, thus its stationary distribution must be Eq. (21). This
concludes the proof.

Theorem 5. With a sufficiently large 𝛽, the proposed al-
gorithm achieves the globally optimal solution of the total
energy consumption minimization problem with arbitrarily
high probability.

Proof: According to Theorem 3, the global optimum is
the best pure strategy GNE of the constrained potential game
𝒢, which globally maximizes the potential function. Let sopt

denote the (unique) globally optimal BS operation strategy,
and thus we have

sopt = argmax
s∈𝒮

Φ(s) . (32)

Hence, ∀s ∈ 𝒮∖ {sopt}, Φ(s) < Φ(sopt). In addition, The-
orem 4 shows that the proposed algorithm converges to a
unique stationary distribution 𝜋 (s) given by Eq. (21), which
depends on the parameter 𝛽. When 𝛽 is sufficiently large,
exp {𝛽Φ(s)} ≪ exp {𝛽Φ(sopt)}. Therefore, according to Eq.
(21), we can derive

lim
𝛽→∞

𝜋
(
sopt) = 1, (33)

and
lim
𝛽→∞

𝜋 (s) = 0,∀s ∈ 𝒮∖{sopt} . (34)

That is, the globally optimal solution sopt is in probability 1,
while other solutions are in probability 0. Therefore, we can
concludes that the proposed algorithm can achieve the global
optimum with arbitrarily high probability.

Remark 3. The discussed optimal BS sleeping solution is
based on the association metric of strongest received signal
strength given by Eq. (1). However, it is worth noting that no
matter which association metric is employed, the correspond-
ing optimal BS sleeping solution can be achieved by using the
proposed scheme, which can be strictly proved by following
the previous lines. Therefore, the terminology “optimal BS
sleeping solution” means it is optimal for any given specific
association metric.

C. Convergence Speed

In this part, we will analyze how fast the algorithm con-
verges to the global optimum, and how the parameters affect
the converge behavior. For analytical convenience, we denote
the set of global optima by 𝒮opt and let 𝜔𝑡 = Pr (s (𝑡) ∈ 𝒮opt),
𝑡 = 0, 1, 2, . . .. Besides, define 𝐷 as the one-step transition
diameter which is the smallest integer so that, starting from
any state s (0) ∈ 𝒮, the algorithm can reach a state in 𝒮opt

in no more than 𝐷 steps following a sequence of states
{s (0) , s (1) , s (2) , . . .}, wherein the strategy of only one BS
is altered in each transition. Following the similar lines of
proof given in [34], we can obtain the following results.

Theorem 6. The number of iterations for reaching the global
optimum for the first time is upper bounded by

𝐷 (1− 𝜔0)

𝜉𝐷
, (35)

where 𝜉 = min
𝛽

(
1

1+exp{𝛽∣𝑈̂𝑘(𝑡)−𝑈𝑘(𝑡)∣}
)

.
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𝜔𝑡 = Pr
(
s̃ (𝑡) ∈ 𝒮opt

∣∣ s̃ (𝑡−𝐷) ∈ 𝒮opt )Pr (s̃ (𝑡−𝐷) ∈ 𝒮opt)
+ Pr

(
s̃ (𝑡) ∈ 𝒮opt

∣∣ s̃ (𝑡−𝐷) ∈ 𝒮∖𝒮opt )Pr (s̃ (𝑡−𝐷) ∈ 𝒮∖𝒮opt)
= Pr

(
s̃ (𝑡−𝐷) ∈ 𝒮opt)+ Pr

(
s̃ (𝑡) ∈ 𝒮opt

∣∣ s̃ (𝑡−𝐷) ∈ 𝒮∖𝒮opt )Pr (s̃ (𝑡−𝐷) ∈ 𝒮∖𝒮opt)
= 𝜔𝑡−𝐷 + Pr

(
s̃ (𝑡) ∈ 𝒮opt

∣∣ s̃ (𝑡−𝐷) ∈ 𝒮∖𝒮opt )Pr (s̃ (𝑡−𝐷) ∈ 𝒮∖𝒮opt) (36)

Proof: Based on {s (𝑡)}+∞
𝑡=0 , we construct an auxiliary

chain {s̃ (𝑡)}+∞
𝑡=0 by letting the global optimum of the original

chain {s (𝑡)}+∞
𝑡=0 to be an absorbing state. That is, whenever

a state in 𝒮opt is reached, the system state will stay there.
Moreover, s̃ (𝑡) is obviously a time-homogeneous Markov
chain. Therefore, ∀𝑡 > 𝐷, Eq. (36) holds.

In the following, we analyze the worst case in terms of the
convergence speed (only one BS updates its strategy in each it-
eration). In the proposed algorithm, the transition probability is

given by
exp{𝛽𝑈̂𝑘(𝑡)}

exp{𝛽𝑈𝑘(𝑡)}+exp{𝛽𝑈̂𝑘(𝑡)} . Because the state transition
is bidirectional (i.e., time-reversible), if state 𝑖 transfers to state
𝑗, state 𝑗 can also transfer to state 𝑖, and the reverse transition
probability is exp{𝛽𝑈𝑘(𝑡)}

exp{𝛽𝑈𝑘(𝑡)}+exp{𝛽𝑈̂𝑘(𝑡)} . Thus, the lower bound

of transition probability is 𝜉 = min
𝛽

(
1

1+exp{𝛽∣𝑈̂𝑘(𝑡)−𝑈𝑘(𝑡)∣}
)

.

Therefore,

Pr
(
s̃ (𝑡) ∈ 𝒮opt

∣∣̃s (𝑡−𝐷) ∈ 𝒮∖𝒮opt ) ≥ 𝜉𝐷. (37)

Then, Eq. (36) results in

𝜔𝑡 ≥ 𝜔𝑡−𝐷 + (1− 𝜔𝑡−𝐷) 𝜉𝐷. (38)

Thus,
1− 𝜔𝑡 ≤

(
1− 𝜉𝐷)(1− 𝜔𝑡−𝐷). (39)

Furthermore, we know 𝜔𝑡 ≤ 𝜔𝑡−1, ∀𝑡 > 1, since the
chain {s̃ (𝑡)}+∞

𝑡=0 is absorbing. Through recursive iteration, we
achieve

1− 𝜔𝑡 ≤
(
1− 𝜉𝐷)𝑟 (1− 𝜔0) , 𝑟 = ⌊𝑡/𝐷⌋ , (40)

where ⌊𝑡/𝐷⌋ denotes the largest integer not beyond 𝑡/𝐷. Let 𝜏
be the random variable denoting the time when a optimal state
in 𝒮opt is reached for the first time. Thus, 𝜏 = 𝑡 represents the

event {s̃ (𝑡) ∈ 𝒮opt}
𝑡−1∩
𝑛=0
{s̃ (𝑛) ∈ 𝒮∖𝒮opt}, and 𝐸 [𝜏 ] denotes

the expected time to reach the global optimum. According
to the property of absorbing Markov chains, Pr (𝜏 = 𝑡) =
𝜔𝑡 − 𝜔𝑡−1,∀𝑡 ≥ 1 with Pr (𝜏 = 0) = 𝜔0, so that {𝜔𝑡} leads
to the distribution of 𝜏 . Then, applying the relation between
the expected value of a non-negative random variable and its
probability distribution, we have

𝐸 [𝜏 ] =

∞∑
𝑡=0

Pr (𝜏 > 𝑡) =

∞∑
𝑡=0

(1− 𝜔𝑡). (41)

Now, based on (40) and (41), we can derive

𝐸 [𝜏 ] =
∞∑
𝑟=0

𝐷−1∑
𝑚=0

(1− 𝜔𝑟𝐷+𝑚)

≤
∞∑
𝑟=0

𝐷 (1− 𝜔0)
(
1− 𝜉𝐷)𝑟 =

𝐷 (1− 𝜔0)

𝜉𝐷
.

(42)

Besides, owing to the relationship between the two chains
{s (𝑡)}+∞

𝑡=0 and {s̃ (𝑡)}+∞
𝑡=0 , we know the convergence time

of {s̃ (𝑡)}+∞
𝑡=0 is exactly the time that {s (𝑡)}+∞

𝑡=0 reaches the
global optimum for the first time. Therefore, the proof is
completed.

Because 𝜉 < 1, the upper bound of the number of iterations
for reaching the global optimum 𝐷(1−𝜔0)

𝜉𝐷
increases with

the one-step transition diameter 𝐷. It is known from the
definition of 𝐷 that 𝐷 is directly related to the amount of
BSs 𝐾. When 𝐾 is larger, 𝐷 generally gets larger as well,
which leads to relatively slower convergence of the algorithm.
Besides, since 𝜉 monotonously decreases with the increasing
of 𝛽, we can conclude that the average time needed to reach
the global optimum will be longer when 𝛽 gets larger, and
vice versa. Furthermore, besides the first time to reach the
global optimum, we are also concerned about the average
time of returning to the global optimum after leaving that
state. As we have proved in Theorem 4, the irreducible and
aperiodic Markov chain {s (𝑡)}+∞

𝑡=0 has an unique stationary
distribution 𝜋 (s) = exp{𝛽Φ(s)}∑

ŝ∈𝒮 exp{𝛽Φ(ŝ)} . With a standard Markov
chain analysis, starting from any state s, the average time for
returning to s is 𝜂 (s) = 1

𝜋(s) , which is inversely proportional
to the stationary distribution probability [52]. Therefore, when
𝛽 increases, the average time for returning to the optimal
solution decreases since 𝜋 (sopt) gets larger.

V. SIMULATION RESULTS

In this section, we use extensive simulations to verify the
proposed energy-efficient BS sleeping algorithm. Similar to
[4], [20], a heterogeneous network topology composed of five
macro BSs and five micro BSs in 5 × 5 km2 is considered
for our simulations. A snapshot of cell coverage is plotted
in Fig. 5. In the simulation, the maximal transmission power
for macro and micro BSs is set to be 43dBm and 30dBm
[4], respectively. Based on the linear relationship between
transmission and operational power consumptions [4], we
could derive the maximal operational powers for macro and
micro BSs as 865W and 38W, respectively.

For the traffic model, we assume that file transmission
requests at location 𝑥 ∈ 𝒜 follow a Poisson point process with
arrival rate 𝜆 (𝑥) and average file size 1/𝜇 (𝑥) = 100 kbyte. In
modeling the propagation environment, we use the modified
COST 231 path loss model with macro BS height ℎ = 32m
and micro BS height ℎ = 12.5m [4]. Other parameter settings
are based on the IEEE 802.16m evaluation methodology
document5 [53]. To guarantee the system reliability, the system
load threshold for all BSs are set to be 𝜌th = 0.6 [18]. For the

5Notably, in order to present more comprehensive numerical analyses, we
slightly change one of these parameters during the simulation processes.
Whenever we make the changes, we will explicitly refer to it.
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Fig. 5. Snapshot of cell coverage when all the BSs are on (BSs 1-5 are macro
BSs, and BSs 6-10 are micro BSs, 𝑞 = 0.5, 𝜌th = 0.6, 𝜆(𝑥) = 2× 10−6).

cost function of energy consumption, we vary the portion of
fixed power consumption 𝑞𝑖 between 0 and 1 so that we can
cover several types of BSs from energy-proportional BSs to
non-energy-proportional BSs.

Algorithm 2: Greedy BS Switching-off Algorithm

1: Initialize ℬon = 𝒦;
2: while ℬon ∕= ∅
3: for 𝑘 ∈ 𝒦
4: while 𝜌𝑖 + 𝜌𝑘→𝑖 ≤ 𝜌th

𝑖 ,∀𝑖 ∈ 𝒞𝑘 ∩ ℬon

5: Calculate Δ(𝑘) = 𝐸(ℬon)− 𝐸(ℬon ∖ {𝑘});
6: end while
7: end for
8: if No BS can be switched off, then stop the algorithm;
9: else, find BS 𝑘∗ = arg max

𝑘∈ℬon
Δ(𝑘), ℬon ← ℬon − {𝑘};

10: end while

Algorithm 3: SWES Algorithm

1: Initialize ℬon = 𝒦;
2: while ℬon ∕= ∅
3: for 𝑘 ∈ 𝒦
4: while 𝜌𝑖+𝜌𝑘→𝑖 ≤ 𝜌th

𝑖 ,∀𝑖 ∈ N𝑘. Here, N𝑘 = 𝒞𝑘∩ℬon.
5: Calculate Δ(𝑘) = 1

∣N𝑘∣
∑

𝑖∈N𝑘
(𝜌𝑖 + 𝜌𝑘→𝑖);

6: end while
7: end for
8: if No BS can be switched off, then stop the algorithm;
9: else, find BS 𝑘∗ = arg min

𝑘∈ℬon
Δ(𝑘), ℬon ← ℬon − {𝑘};

10: end while

A. Convergence of the Proposed Algorithm

1) Static Networking Scenarios: The convergence behav-
ior of the proposed algorithm is shown in Fig. 7, and the

Fig. 6. Snapshot of cell coverage by the proposed BSs sleeping algorithm
(𝑞 = 0.5, 𝜌th = 0.6, 𝜆(𝑥) = 2× 10−6).

convergence curves of the greedy algorithm in [4], [16] and
the SWES (switching-on/off based energy saving) algorithm
in [18] are presented for comparison. In order to prove the
optimality of our proposed algorithm, the globally optimal
solution is plotted by exhaustive search. The energy saving
ratio is used for the performance metric, which is defined as:
1-[the ratio between energy consumptions when the maximum
number of BSs are turned off and when all BSs are turned
on]. These results are obtained under homogeneous traffic
distribution, i.e., 𝜆 (𝑥) = 𝜆 for all 𝑥 ∈ 𝒜. As depicted in
Fig. 7, the network utilities by the greedy algorithm and the
proposed algorithm are updated at each iteration and both
greatly improved at the convergence time. Furthermore, our
proposed algorithm can finally achieve the global optimum,
while the greedy algorithm only obtains a local optimum. In
contrast, the performance of the SWES algorithm is much
worse, since it is a decentralized algorithm which uses the
network-impact for decision metric and requires only local
information. It should be noted that the greedy algorithm
and the SWES algorithm converge faster than our proposed
algorithm, since they use a deterministic updating method and
might converge to a local optimum. Instead, our proposed
algorithm employs a probabilistic updating method which
could get rid of the local optimum at the expense of more time
on the solution exploration. Moreover, please refer to Table II
for more comprehensive comparisons on the three algorithms.

We now analyze in more details the convergence behavior
of the proposed algorithm. Fig. 8 plots the evolution of the
system load of each BS versus the number of iterations. The
system load of each BS is updated along with the updating
of BS sleeping strategy at each iteration, and the convergence
is achieved in about 50 iterations. We can observe that the
system load of macro BSs 2,3 and micro BS 10 converges
to 0, which means they are turned off to save the power
consumption while guaranteeing the system load of other BSs
not beyond the threshold 𝜌th. When macro BSs 2, 3 and micro
BS 10 are switched off, those UEs originally associated with
the switched-off BSs need to be transferred to the neighboring
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TABLE II
ALGORITHMS COMPARISON.

Performance
of solution Operation manner Required information Complexity of

strategy updating Convergence speed

Proposed algorithm Global optimum Decentralized Local information 𝑂 (1) Relatively slow
Greedy algorithm [4], [16] Local optimum Centralized Global information 𝑂

(
𝐾2

)
Fast

SWES algorithm [18] Feasible and
dynamic solution Decentralized Local information 𝑂 (1) Medium
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Fig. 7. Convergence and optimality (𝑞 = 0.5, 𝜌th = 0.6, 𝜆(𝑥) = 2×10−6).
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Fig. 8. The evolution of each BS’s system load versus the iterations (𝑞 = 0.5,
𝜌th = 0.6, 𝜆(𝑥) = 2× 10−6).

BSs. To get a clear and vivid understanding of the users
transferring, we plot the snapshots of cell coverage before and
after macro BSs 2, 3 and micro BS 10 are switched off in Fig.
5 and Fig. 6, respectively. By comparing the two figures, we
can see that the users originally served by micro BS 10 are
transferred to macro BSs 4 and 5. When macro BSs 2 and
3 are switched off, micro BS 9 located near the boundary
between BS 2 and BS 3 extends its coverage to serve a larger
area, and the left users are transferred to macro BSs 1, 4 and
5. Overall, besides the micro BSs nearby, macro BSs take the
primary responsibility of compensating the coverage.

According to Theorems 5 and 6, the tradeoff between
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Fig. 9. Comparison of convergence speed of the proposed algorithm when
changing 𝛽 (𝑞 = 0.5, 𝜌th = 0.6, 𝜆(𝑥) = 2× 10−6).

optimality and convergence speed is controlled by the learning
parameter 𝛽 in Step 3 of the proposed algorithm, which
balances the tradeoff between exploration and exploitation
[45]. Note that the smoothing factor 𝛽 here is analogous to
the inverse of temperature in simulated annealing. A small 𝛽
represents extensive space search with slow convergence while
a large 𝛽 represents limited space search with fast convergence
[37], [46]. Therefore, it is advisable that at the beginning phase
the value of 𝛽 is set to be a small number for extensive space
search, and keeps increasing as the proposed algorithm iterates
for accelerating the convergence [46], [47], [50].

In practice, to achieve a tradeoff between optimality and
convergence speed, engineering approaches such as 𝛽 = 𝑡

𝑐 ,
where 𝑡 is the iteration step and 𝑐 is a constant coefficient,
can be utilized, as in [47], [50]. To investigate the impact
of coefficient 𝑐 on the convergence, we plot the convergence
curves as for different selections of 𝑐 in Fig. 9. The simulation
results are obtained by taking the average value over 1000
trials. We can find that when 𝑐 is larger, the achieved solution
is of less power consumption, while the convergence needs
more time. In contrast, when 𝑐 takes smaller value like 250,
the proposed algorithm can converge fast in 50 iterations, but
the obtained solution consumes higher power. It is because
larger 𝑐 leads to more extensive solution space search which
can easily find the globally optimal solution, however, the
extensive search also results in slower convergence. According
to Fig. 9, it is better to select 𝑐 as 1000, since it allows
the algorithm to convergence within 100 iterations and also
achieve a near-optimal solution.

2) Dynamic Networking Scenarios: We further study the
convergence performance of the proposed algorithm in dy-
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Fig. 10. Convergence performance in the channel dynamic scenario (𝑞 = 0.5,
𝜌th = 0.6, 𝜆(𝑥) = 2× 10−6).

namic scenarios. Firstly, we consider the channel dynamic
scenario where channels are time-varying during the conver-
gence of the algorithm. The channels are assumed to undergo
Rayleigh fading with unit mean. Moreover, we consider fast
fading channels that vary at different iteration slots. Secondly,
we take account of the traffic dynamic scenario where the
evolution of the file size follows the long range dependence
(LRD) distribution [54]–[56]. The LRD traffic is generated by
using the approach in [56] with the same parameter setting
therein. Due to dynamic changing of channel and traffic,
obviously the optimal solution should be a dynamic solution.
However, since the environment (channel, traffic) dynamically
and stochastically varies, the channel and traffic characteristics
in the future time slots are unknown a priori, and thus the
dynamic optimal solution to the BS sleeping problem cannot
be achieved a priori.

Fig. 10 and Fig. 11 plots the convergence behavior of
the proposed algorithm under channel dynamics and traffic
dynamics, respectively. Since only the SWES algorithm [18]
is originally designed for dynamic systems, we merely plot
its dynamic solution for performance comparison. It is seen in
Fig. 10 that both algorithms can well adapt to the channel
dynamics. After 50 iterations, both algorithms can greatly
decrease the total energy consumption and improve the energy
saving ratio. Moreover, the proposed algorithm can achieve
better performance than the SWES algorithm. Besides, by
comparing Fig. 10 and Fig. 11, we can see that the traffic
dynamics have a greater impact than the channel dynamics
on the algorithms. More sharp vibrations can be observed
in Fig. 11. It is because the LRD traffic tends to arrive in
clusters, causing the burst phenomenon [56]. However, Fig.
11 shows the proposed algorithm can effectively decrease the
total energy consumption and improve the energy saving ratio
albeit experiencing sharp vibrations. In contrast, the SWES
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Fig. 11. Convergence performance in the traffic dynamic scenario (𝑞 = 0.5,
𝜌th = 0.6).

algorithm can well adapt to the LRD traffic dynamics, but
obtains a relatively worse solution.

In practical implementations, the BS switching algorithm
cannot keep running to adapt to the dynamic environment.
Once some BSs are switched off, the UEs within their cov-
erage will need to be transferred to other BSs, thus incurring
a large amount of handover. If the algorithm runs frequently,
the handover cost becomes a major concern. Therefore, we
only re-start the algorithm when the traffic profile experiences
significant variations. From many measurement data in real
networks [9], [17], [18], the traffic pattern clearly varies over
time, but could still be assumed almost constant during a
certain period of time, e.g., one hour [4]. Therefore, the time-
scale of running the BS switching algorithm is at the scale of
an hour similar to [4], and the implementation in each period
is in a quasi-static manner based on the average channel gain
and expected traffic arrival.

B. Energy Saving Performance

Hereinafter, we compare the performance of the proposed
algorithm with those of the existing algorithms under various
parameter configurations in quasi-static environment.

Fig. 12 plots the energy saving ratio by different algorithms
versus the arrival rate 𝜆 (𝑥). As we have theoretically proved,
our algorithm can converge to the global optimum. In contrast,
the greedy algorithm [4], [16] finds a locally optimal solution6,
while the SWES algorithm [18] provides the worst energy-
saving performance because it mainly focuses on the dynamic
environment with less information exchange. Moreover, it can
be observed that the energy saving ratio decreases with the

6It should be noted that the greedy algorithm can sometimes find the global
optimum. The reasons may be 1) the greedy search route could lead to global
optimum in some particular cases, 2) there is only one local/global optimum.
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Fig. 12. The energy saving ratio by different algorithms versus the arrival
rate (𝑞 = 0.5, 𝜌th = 0.6).
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Fig. 13. The power consumption by different solutions versus the arrival
rate (𝑞 = 0.5, 𝜌th = 0.6).
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Fig. 14. The energy saving ratio by different algorithms versus the proportion
of the fixed power consumption (𝜌th = 0.6, 𝜆(𝑥) = 2× 10−6).

increasing of the arrival rate. The reason is that when the
arrival rate becomes larger, the traffic load will get heavier
given the fixed file size 𝜇 (𝑥). In order to guarantee the
coverage, less BSs can be switched off. Therefore, the energy
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Fig. 15. The energy saving ratio by different algorithms versus the system
load threshold (𝑞 = 0.5, 𝜆(𝑥) = 2× 10−6).

saving ratio decreases relatively. Besides, it is observed that
the curves are not smooth. The reason is as follows. When the
arrival rate 𝜆 (𝑥) decreases from 1.2×10−6 to 0.8×10−6, only
a micro BS could be switched off, which results in marginal
variation of the energy saving ratio. However, when the arrival
rate 𝜆 (𝑥) decreases from 0.8×10−6 to 0.4×10−6, a macro BS
could be switched off, which achieves significant variation of
the energy saving ratio because switching off a macro BS can
save more energy than switching off a micro BS. Also, for the
sake of comparison, Fig. 13 plots the power consumption by
different solutions versus the arrival rate. It is seen that the best
NE consumes the least power same to the global optimum, as
theoretically proved in Theorem 3. Besides, the performance
of the average NE follows, and the worst NE consumes the
most power.

In Fig. 14, we plot the energy saving ratio achieved by
different algorithms versus the proportion of the fixed power
consumption 𝑞. It can be clearly seen that larger energy saving
can be expected from larger values of 𝑞. In other words,
the farther the BSs are from energy-proportional operation
mode, the larger energy conservation can be expected. This
is because the energy-saving benefit from turning off one BS
mainly comes from reducing the fixed power consumption
term [4]. As for the performance comparison, we can notice
that our proposed algorithm achieves the maximum energy
saving, the greedy algorithm inferior, and the SWES algorithm
worst. Furthermore, when the proportion of the fixed power
consumption 𝑞 increases, the gap between the greedy solution
and the global optimum becomes smaller, and the greedy
algorithm can obtain a near-optimal solution.

Besides, we present the energy saving ratio by different
algorithms versus the threshold of the system load 𝜌th in
Fig. 15. Also, the proposed algorithm achieves the best per-
formance, while the SWES algorithm possesses the worst
solution. Moreover, as shown in Fig. 15, more energy saving
can be achieved when the system load threshold gets larger,
which matches our common sense because larger threshold
means larger feasible solution space. Additionally, it can be
observed in Fig. 15 that there are some distinct falling points
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Fig. 16. The energy saving ratio by different algorithms versus the system
load threshold in an inhomogeneous case. As an example of inhomogeneous
traffic loads [4], a linearly increasing load along the diagonal direction from
right bottom (10−7) to left top (10−6) is considered. Besides, the proportion
of the fixed power consumption for micro BSs is set to be 𝑞 = 0.4 , and that
for macro BSs is set to be 𝑞 = 0.6.
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Fig. 17. The per flow delay achieved by the proposed algorithm versus the
system load threshold 𝜌th under different arrival rates (𝑞 = 0.5).

for the greedy algorithm and SWES algorithm. It is because
both of the two algorithms search better solution in a greedy
manner. Therefore, the obtained solution may not match the
general trend. Similar performance behaviors can be found
in [4]. In addition, Fig. 16 shows the energy saving ratio by
different algorithms versus the system load threshold 𝜌th in an
inhomogeneous case, which also validates the performance of
the proposed algorithm.

On the other hand, increasing the system load threshold
would inevitably bring longer service delay, as analyzed in
Section II. In order to evaluate the impact of the selection of
𝜌th on the service delay, we depict the performances of per flow
delay achieved by the proposed algorithm versus the system
load threshold under different arrival rates in Fig. 17. It is
clearly demonstrated that increasing the system load threshold
results in more severe delay when the arrival rate is large, and
does not cause significant impact when the arrival rate is small.
Furthermore, given the same system load threshold 𝜌th, larger
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Fig. 18. Delay comparison of different algorithms (𝑞 = 0.5, 𝜆(𝑥) = 2 ×
10−6).

arrival rate corresponds to more severe delay. In addition, we
compare the per flow delay of the proposed algorithm and
the state-of-the-art methods in Fig. 18. According to [4], [20],
the delay is calculated by 𝜓 =

∑
𝑖∈ℬon

𝜌𝑖

1−𝜌𝑖
, which is only

determined by the traffic load 𝜌𝑖. Besides, the traffic load
𝜌𝑖 is subject to Eq. (6b) as a constraint in our BS sleeping
problem. Since 𝜌𝑖 is strictly guaranteed to be less than a
threshold 𝜌th

𝑖 , the delay performance by different algorithms
can be all guaranteed, as shown in Fig. 18. However, there
is no obvious superiority or inferiority for each algorithm in
terms of the delay performance. The reason is that the delay
performance (determined by 𝜌𝑖) is formulated as a constraint
while minimizing the total energy expenditure is formulated
as the optimization goal, as given by Eq. (6).

VI. CONCLUSION

In this paper, we have proposed a distributed cooperative
framework to improve the energy efficiency of the green
cellular networks. Within this framework, the neighboring BSs
cooperated to optimize the switching strategies in order to
maximize the energy saving while guaranteeing users’ minimal
service requirements. The inter-BS cooperation was formu-
lated based on the principle of ecological self-organization.
Specifically, an interaction graph was first defined to capture
the network impact of a BS switching operation. Then, we
formulated the problem of energy saving as a constrained
graphical game with local cooperation, where each BS acted
as a game player under the constraint of traffic load. The con-
strained graphical game was proved to be an exact constrained
potential game. Furthermore, we proved the existence of a gen-
eralized Nash equilibrium (GNE), and the best GNE coincided
with the optimal solution of total energy consumption mini-
mization. Accordingly, we designed a decentralized iterative
algorithm to find the globally optimal solution, where only
local information exchange among the neighboring BSs was
needed. Theoretical analysis and simulation results illustrated
effectiveness and efficiency of the proposed algorithm.

Future work may jointly consider the optimal BS switching
and user association scheme, since this paper only studies a
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simple signal strength based users association. Secondly, it
would be interesting and challenging to extend the model to
a more practical case where various BSs belong to different
service provider and some BSs may not be willing to partic-
ipate in the altruistic cooperation. Besides, the switching off
transients of the BSs will also be studied in the future work.
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