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ABSTRACT Mobile instantaneous messaging (MIM) services significantly facilitate personal and business
communications, inevitably consume substantial network resources, and potentially affect the network
stability. In this paper, we aim to understand the traffic nature of MIM in cellular networks. Specifically,
in order to reach credible conclusions, our research takes account of practical measurement records of
MIM services from China Mobile at two different levels. First, a data set of individual message level (IML)
traffic is exploited and reveals power-law distributed message length and lognormal distributed interarrival
time, the heavy-tailness of which completely diverts from the geometric model and the exponential model
recommended by the 3rd generation partnership project (3GPP). Second, another data set considers the
statistical pattern of aggregated traffic within one whole base station, and demonstrates the accuracy of α-
stable models for the aggregated traffic. Furthermore, it verifies that the α-stable models are suitable for
characterizing the traffic in both the conventional fixed core networks and the cellular access networks. At
last, with the aid of the generalized central limit theorem, we build up a theoretical relation between the
distributions of IML traffic and aggregated traffic.

INDEX TERMS Mobile instantaneous messaging, Wechat/Weixin, cellular networks, traffic distribution,
heavy-tailed distributions, α-stable models.

I. INTRODUCTION
Instantaneous messaging (IM) services, longly running on
PC platforms for personal and business communications, has
recently flourished in mobile devices and quickly generated
significant amount of traffic loads within cellular networks.
However, compared with traditional voice andmessaging ser-
vices within cellular networks, these newly emerging mobile
IM (MIM) services distinguish themselves with the inborn
packet-switching nature and its accompanied keep-alive (KA)
mechanisms, which imply to consume only small amount of
core network bandwidth but considerable radio resources of
mobile access networks.Moreover, due to the KAmechanism
to keepmobile users in touch with servers, MIM services fun-
damentally affect the stabilization and reliability of cellular
networks [1], [2], and could become a huge burden on
the network operators [3]. Therefore, it is meaningful to
carefully examine the traffic nature of MIM services, so as

to design MIM service-oriented protocols to overcome their
induced negative influence to cellular networks. In this
paper, we take account of a widely booming MIM service
‘‘WeChat/Weixin’’, which allows over 6 hundred million
mobile users to exchange text messages and multimedia
files like voices, pictures and videos with each other via
smartphones [4], in China as well as around the world.

Indeed, due to its apparent importance to the protocol
design and performance evaluation of telecommunications
networks, there have already existed some former works
towards modeling the traffic in various networks. In fixed
broadband networks, researchers showed that aggregate
traffic traces demonstrate strong burstiness and could be
modeled with α-stable models1 [5], [6]. On the other hand,

1In this paper, the term ‘‘α-stable models’’ is interchangeable with
α-stable distributions.
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FIGURE 1. An illustration of mobile instantaneous messaging activities.

the investigation over traffic characteristics of IM in wired
Internet revealed heavy-tailed distribution phenomena in ser-
vices like AIM (AOL Instant Messenger) and Windows Live
Messenger [7], [8]. Therefore, it is natural to raise a question,
namely which one of the aforementioned models is more
suitable for MIM traffic? Meanwhile, it remains doubtful
whether cellular networks with distinct characteristics from
fixed networks (e.g., more stringent constraints on radio
resources, relatively expensive billing polices and different
user behaviors due to mobility) [9] need a totally different
traffic model?

In this paper, following our previous work [3], we make
an intensive study on the fundamental traffic nature of
MIM service through large amount of ‘‘Wechat/Weixin’’
traffic observations from operating cellular networks. Based
on these practical measurements, we aim to find the precise
model for the traffic of MIM services, and try to explain
the reasons behind the somewhat conflicting results in pre-
vious studies. Interestingly, our measurements reveal that the
distribution of individual message’s length and inter-arrival
time could be better fitted using a power-law distribution
and a lognormal distribution, which are completely different
from the recommended models in 3GPP [10]. Instead, the
aggregated traffic of these individual messages in a specific
base station (BS) of cellular access networks obeys α-stable
models, which usually characterize the statistical patterns of
the summation of lots of independently identically distributed
random variables [11]. Besides, we build up a theoretical
explanation to the evolution from power-law distributed indi-
vidual message length to aggregated traffic within one BS.
In a word, this paper contributes to the comprehensive under-
standing of traffic nature of MIM services, by analyzing
practical traffic records of MIM services and further building
models for traffic characteristics. Consequently, the related
research results are able to benefit the MIM services-related
traffic prediction and network protocol design.

The remainder of the paper is organized as follows.
In Section II, we firstly present some necessary background
of MIM services, describe the details of utilized practical
datasets, and introduce the fundamentals of α-stable models.
In Section III, we provide fitting results for individual mes-
sage’s length, inter-arrival time, and aggregated traffic within
one BS, and give our theoretical explanation between them.
Finally, we conclude this paper with a summary and future
research direction in Section IV.

II. BACKGROUND
A. MIM WORKING MECHANISMS AND
DATASET DESCRIPTION
MIM services, which solely rely on mobile Internet to
exchange information, have quite distinct working mech-
anisms from traditional short messaging services. One of
the prominent differences is that born with standard
protocols [12], traditional short messaging services could
conveniently fulfill timely information delivery and pro-
vision ‘‘always-online’’ service. However, for mobile
Internet in packet switching domain, a TCP connection
would release itself if exceeding a TCP inactivity timer.
Therefore, as depicted in Fig. 1, besides transmitting (TX)
and receiving (RX) normal packets after logging onto a
server, MIM services commonly take advantage of keep-
alive mechanisms to send packets containing little informa-
tion periodically and maintain a long-lived TCP connection.
Hereinafter, message refers to a series of packets transmitted
between the user equipment (UE) and the servers of service
provider on application layer. Therefore, the messages deliv-
ered on every TCP connection constitute the fundamental
elements of MIM services, and are named as individual
message-level (IML) traffic in this paper. Comparatively,
when the messages are transmitted through one BS, they
become accumulated and could be regarded as the aggregated
traffic from a slightly more macroscopical perspective.
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FIGURE 2. The snapshots of aggregated traffic at three different moments in a region containing 23 base stations.

In order to build primary models, we collect mea-
surements of the MIM traffic from the on-operating
cellular networks. Our datasets collected from the Gb and Gn
interfaces [3], covering about 15000 GSM and UMTS BSs of
China Mobile in an eastern provincial capital within a region
of 3000 km2, could be classified as two categories in terms
of the corresponding resolutions (i.e., IML traffic and aggre-
gated traffic). The 1-month measurement records of IML
traffic are collected from 7 million subscribers, and contain
timestamps, cell IDs, anonymous subscriber IDs, message
lengths, and message types. Generally, messages are usually
transmitted via a TCP connection on both uplink and down-
link data channel (as depicted in Fig. 1). However, for ease of
analyses, we do not distinguish the directions of messages
hereafter. In contrast, the measurement records of aggre-
gated traffic possess coarser resolution than those of IML
traffic, and merely specify per 5-minute traffic volume of
roughly 6000 BSs in the same city on September 9th, 2014.
Fig. 2 plots the snapshots of aggregated traffic at three differ-
ent moments in a region.

B. MATHEMATICAL BACKGROUND
Following the generalized central limit theorem, α-Stable
models manifest themselves in the capability to approxi-
mate the distribution of normalized sums of a relatively
large number of independently identically distributed random
variables [11]. Besides, α-stable models produce strong
bursty results with properties of heavy-tailed distributions

and long range dependence. Therefore, they arose in a
natural way to characterize the traffic in fixed broadband
networks [5], [6] and have been exploited in resource man-
agement analyses [13], [14].
α-Stable models, with few exceptions, lack a closed-form

expression of the PDF, and are generally specified by their
characteristic functions.
Definition 1: A random variable X is said to obey α-stable

models if there are parameters 0<α≤2, σ ≥0, −1≤β≤1,
and µ ∈ R such that its characteristic function is of the
following form:

8(ω) = E(exp jωX )

=


exp

{
−σα|ω|α

(
1− jβ(sgn(ω)) tan

πα

2

)
+ jµω

}
,

α 6= 1;

exp
{
−σ |ω|

(
1+ j

2β
π

(sgn(ω)) ln |ω|
)
+ jµω

}
,

α = 1.
(1)

Here, the function E(·) represents the expectation opera-
tion with respect to a random variable. α is called the
characteristic exponent and indicates the index of stability,
while β is identified as the skewness parameter. α and β
together determine the shape of the models. Moreover,
σ and µ are called scale and shift parameters, respectively.
Specifically, if α = 2, α-stable models reduce to Gaussian
distributions.
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Furthermore, for an α-stable modeled random variable X ,
there exists a linear relationship between the parameter α and
the function 9(ω) = ln {−Re [ln (8(ω))]} as

9(ω) = ln {−Re [ln (8(ω))]} = α ln(ω)+ α ln(σ ), (2)

where the function Re(·) calculates the real part of the input
variable.

Usually, it is challenging to provewhether a dataset follows
a specific distribution, especially for α-stable models without
a closed-form expression for their PDF. Therefore, when a
dataset is said to satisfy α-stable models, it usually means
the dataset is consistent with the hypothetical distribution and
the corresponding properties. In other words, the validation
needs to firstly estimate parameters of α-stable models from
the given dataset, and then compare the real distribution
of the dataset with the estimated α-stable model [6].
Specifically, the corresponding parameters in α-stable
models can be determined by quantile methods, or sample
characteristic function methods [5], [6].

III. THE STATISTICAL PATTERN AND INHERITED
METHODOLOGY OF MIM SERVICES
A. IML TRAFFIC
In order to understand the IML traffic nature ofMIM services,
we firstly calculate the probability density functions (PDF)
of message length, and then fitting them to common heavy-
tailed distributions listed in Table 1. Specifically, during
the fitting procedures, we obtain the unknown parameters
in candidate distribution functions (except α-stable models)
using maximum likelihood estimation (MLE) methodology.
For α-stable models, we estimate the relevant parameters
using quantile methods [15], correspondingly build the mod-
els to generate some random variable, and finally compare its
induced PDF with the exact (empirical) one.

TABLE 1. The accuracy measured by RMSE after fitting empirical data to
candidate distributions.

In Fig. 3, we provide the corresponding results after fitting
candidate distribution functions to the empirical PDF of mes-
sage length vi. Recalling the statements in Section II-B, if the
simulated dataset generated by one distribution has the same
or approximately same PDF as the real one, the distribution of
empirical dataset could be coarsely determined. Interestingly,
Fig. 3 demonstrates that instead of geometric distribution
function recommended by 3GPP [10], power-law distribution
(i.e., 0.347x−2.407) could most accurately approximate the
empirical PDF of message length. Furthermore, a root mean

FIGURE 3. The fitting results of MIM activities’ message length by
candidate distribution functions.

square error (RMSE),2 a larger one of which reflects a lower
degree of fitting preciseness, is also applied to quantitatively
find the fittest distribution function. The RMSE results in
column Wvi of Table 1 also show that the PDF of message
length is most appropriately to be modeled by power-law
distribution function.

FIGURE 4. The PDF of inter-arrival time of MIM messages and other
distribution functions with MLE parameters estimation.

On the other hand, according to the timestamps of
messages, we calculate inter-arrival time t between consec-
utive messages in order of second, and examine the fitting
preciseness of MLE estimated candidate distribution func-
tions to the corresponding PDF. Fig. 4 depicts the related
fitting results compared to the empirical data (see legend:
User behavior only) with the inter-arrival time from

2Our previous study in [3] provides a similar fitting preciseness
result after performing an Akaike information criterion (AIC) test [16].
However, AIC test is not applicable for α-stable models. Besides,
a Kolmogorov-Smirnov (K-S) test [17] is employed to check for goodness-
of-fit of the empirical data. However, all candidate distributions are rejected
according to the K-S test at a 95% confidence level, probably due to the
scattering tail of individual message length in Fig. 3 and the sudden prob-
ability increase of aggregated traffic in Fig. 5. Therefore, in this paper, in
consideration of its simplicity, RMSE is exploited as the uniform criterion
for gauging the fitting preciseness.
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2nd to 3000th second. Similarly, column Wt in Table 1
shows the results in terms of RMSE. Compared with
the exponential distribution function recommended in [10],
Fig. 4 and Table 1 shows lognormal distribution function

(i.e., 1
√
2π×2.975x

e
−

(ln x−2.36)2

2×2.9752 ) exhibits superior fitting pre-

ciseness for the inter-arrival time of MIM messages.
Notably, Fig. 4 shows consecutive packets arrive with
very small inter-arrival time, the probability for which
larger than 20s is smaller than 1%. Meanwhile, the peaks
in Fig. 2 with the legend: System measure are incurred by
KA messages from various UE’s operating systems and
diverse MIM versions. Usually, KA cycles are quite different
but usually appear at multiples of 30 seconds. Moreover,
the PDF of the inter-arrival time decreases sharply when
tm is larger than the maximal KA (300s) and the percentage
of messages with inter-arrival time larger than the maximal
KA period accounts only 2%, implying that MIM has to
send the KA messages if it has been out of touch with the
servers for KA period unless the connection to the network is
abnormal.
Remark 1: Compared with the geometric and exponential

distribution functions recommended by 3GPP [10], power-
law and lognormal distribution functions are more suitable
to model the statistical pattern of message lengths and inter-
arrival time of consecutive messages, respectively.

B. AGGREGATED TRAFFIC
In this section, from the perspective of one whole BS,
we examine the fitting results of aggregated traffic within
one BS to candidate distributions. Fig. 5 presents the cor-
responding PDF comparison between the simulated results
and the real aggregated traffic in one randomly selected BS.
By taking advantage of a similar methodology to that in
Section III-A, Fig. 5 implies the traffic records in these
selected areas could be better simulated by α-stable models.
Similarly, column Wva in Table 1 shows α-stable models
lead to better fitting accuracy in terms of RMSE.

FIGURE 5. Fitting results of candidate distributions to empirical
aggregated traffic in one randomly selected BS.

FIGURE 6. (a)∼(d): Fitting results of α-stable models to empirical
aggregated traffic in another two randomly selected BSs; (e): The
preciseness error CDF for all the cells after fitting 9(ω) with respect to
ln(ω) to a linear function; (f): The PDF of α estimated for aggregated
traffic in different cells.

Furthermore, Fig. 6(a)∼(d) verify the fitting preciseness of
empirical data to α-stable models in another four randomly
selected BSs. Fig. 6(e) shows the cumulative distribution
function (CDF) of preciseness error for all the cells after
fitting 9(ω) with respect to ln(ω) to a linear function, and
demonstrates there merely exists minor fitting errors. In other
words, according to the statements in Section II-B, Fig. 6(e)
implies that the aggregated traffic possesses the property of
α-stable models. Given the previous results, it safely comes
to the following remark.
Remark 2: Due to their generality, α-stable models are

most suitable to characterize the aggregated traffic in cellular
networks. Together with previous findings in fixed broadband
networks [5], [6], α-stable models are proven to accurately
model the aggregated traffic from cellular access networks to
core networks.

On one hand, the universal existence of α-stable models
implies and contributes to understanding the intrinsic self-
similarity feature in MIM traffic [18]. On the other hand, the
reasons that MIM traffic universally obeys α-stable models
can be explained as follows. Section III-A unveils that the
length of one individual MIM message follows a power-
law distribution. Meanwhile, the distribution of aggregated
traffic within one BS can be regarded as the accumulation
of lots of IM messages from diverse UEs. Moreover, the
analysis results of inter-arrival time imply frequent packet
transmission. Therefore, according to the generalized central
limit theorem, the sum of a number of random variables
with power-law distributions decreasing as |x|−α−1 where
0 < α < 2 (and therefore having infinite variance) will tend
to be an α-stable model as the number of summands grows.
Interestingly, Fig. 6(f) shows that the PDF of α obtained by
fitting aggregated traffic in different cells to α-stable models,
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and reflects the fitting values of α mostly fall between
1.136 to 1.515, while the slope of power-law distribution
for IML traffic is 2.407. These fitting results prove to be
consistent with the theory from the generalized central limit
theorem [19].
Remark 3: The aggregated traffic within one BS, following

α-stable models, can be explained as the accumulation of a
number of power-law distributed messages.

IV. CONCLUSION AND FUTURE WORKS
In this paper, we investigated the traffic characteristics of
MIM services from two different viewpoints. For IML traffic,
we showed that message length and inter-arrival time better
follow power-law distribution and lognormal distribution,
which are quite different from the recommendation by 3GPP.
For aggregated traffic within one BS, we revealed the accu-
racy of applying α-stable models to characterize this statisti-
cal pattern, and extended the suitability of α-stable models
for traffic in both fixed core networks and cellular access
networks. Besides, following the generalized central limit
theorem, we built up the theoretical relationship between
distributions of IML and aggregated traffic. These heavy-
tailed traffic models of MIM service could contribute to the
design of more efficient algorithms for resource allocation
and network management in cellular networks.

In this paper, we characterized the preciseness of modeling
IML traffic and aggregated traffic by power-law distribution
and α-stable models respectively, depending on extensive
traffic records-based fitting processes. However, it is still
worthwhile to mathematically verify these remarks, and try
to establish the mathematical relationship more rigorously.

REFERENCES
[1] (Jan. 2012). Android Signaling Storm Rises in Japan. [Online]. Available:

http://www.lightreading.com/mobile/device-operating-systems/android-
signaling-storm-rises-in-japan/a/d-id/693138

[2] Reuters. (Dec. 2009). O2 Says iPhone Demand Strained Its London Net-
work. [Online]. Available: http://www.reuters.com/article/2009/12/29/o2-
iphone-idUSLDE5BS0M520091229

[3] X. Zhou, Z. Zhao, R. Li, Y. Zhou, J. Palicot, and H. Zhang, ‘‘Understanding
the nature of social mobile instant messaging in cellular networks,’’ IEEE
Commun. Lett., vol. 18, no. 3, pp. 389–392, Mar. 2014.

[4] Tencent, Inc. (2011). WeChat—The New Way to Connect. [Online].
Available: http://www.wechat.com/en/

[5] J. R. Gallardo, D. Makrakis, and L. Orozco-Barbosa, ‘‘Use of alpha-
stable self-similar stochastic processes for modeling traffic in broadband
networks,’’ Proc. SPIE, Boston, MA, USA, pp. 281–296, Oct. 1998.

[6] X. Ge, G. Zhu, and Y. Zhu, ‘‘On the testing for alpha-stable distributions
of network traffic,’’ Comput. Commun., vol. 27, no. 5, pp. 447–457,
Mar. 2004.

[7] Z. Xiao, L. Guo, and J. Tracey, ‘‘Understanding instant messaging traf-
fic characteristics,’’ in Proc. 27th IEEE ICDCS, Toronto, ON, Canada,
Jun. 2007, p. 51.

[8] J. Leskovec and E. Horvitz, ‘‘Planetary-scale views on a large instant-
messaging network,’’ in Proc. 17th Int. Conf. WWW, 2008, pp. 915–924.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1367620

[9] R. Li, Z. Zhao, X. Zhou, J. Palicot, and H. Zhang, ‘‘The prediction analysis
of cellular radio access network traffic: From entropy theory to networking
practice,’’ IEEE Commun. Mag., vol. 52, no. 6, pp. 234–240, Jun. 2014.

[10] (May 2011). ‘‘GERAN study on mobile data applications,’’ 3GPP,
Tech. Rep. 3GPP TR 43.802. [Online]. Available: http://www.3gpp.org/
DynaReport/FeatureOrStudyItemFile-520002.htm

[11] G. Samorodnitsky, Stable Non-Gaussian Random Processes: Stochastic
Models With Infinite Variance. New York, NY, USA: Chapman & Hall,
Jun. 1994. [Online]. Available: http://www.amazon.com/Stable-Non-
Gaussian-Random-Processes-Stochastic/dp/0412051710

[12] (Jun. 1985). ‘‘Services and facilities to be provided in the
GSM System,’’ Eur. Telecommun. Standards Inst., Tech. Rep.
GSM Doc 28/85. [Online]. Available: http://www.etsi.org/
deliver/etsi_gts/01/0102/05.00.00_60/gsmts_0102v050000p.pdf

[13] W. Song and W. Zhuang, ‘‘Resource reservation for self-similar data
traffic in cellular/WLAN integrated mobile hotspots,’’ in Proc. IEEE ICC,
Cape Town, South Africa, May 2010, pp. 1–5.

[14] J. C.-I. Chuang and N. R. Sollenberger, ‘‘Spectrum resource allocation for
wireless packet access with application to advanced cellular Internet ser-
vice,’’ IEEE J. Sel. Areas Commun., vol. 16, no. 6, pp. 820–829, Aug. 1998.

[15] J. H. McCulloch, ‘‘Simple consistent estimators of stable distribu-
tion parameters,’’ Commun. Statist.-Simul. Comput., vol. 15, no. 4,
pp. 1109–1136, Jan. 1986.

[16] K. P. Burnham and D. R. Anderson, ‘‘Multimodel inference understanding
AIC and BIC in model selection,’’ Sociol. Methods Res., vol. 33, no. 2,
pp. 261–304, Jan. 2004.

[17] M. A. Stephens, ‘‘EDF statistics for goodness of fit and some compar-
isons,’’ J. Amer. Statist. Assoc., vol. 69, no. 347, pp. 730–737, Sep. 1974.
[Online]. Available: http://www.math.utah.edu/~morris/Courses/6010/
p1/writeup/ks.pdf

[18] M. E. Crovella and A. Bestavros, ‘‘Self-similarity in World Wide Web
traffic: Evidence and possible causes,’’ IEEE/ACM Trans. Netw., vol. 5,
no. 6, pp. 835–846, Dec. 1997.

[19] A. N. Kolmogorov, K. L. Chung, and B. V. Gnedenko, Limit
Distributions for Sums of Independent Random Variables. Reading,
MA, USA: Addison-Wesley, 1968. [Online]. Available: https://
openlibrary.org/books/OL19738039M/Limit_distributions_for_sums_of
_independent_random_variables

RONGPENG LI received the B.E. (Hons.) degree
fromXidian University, Xi’an, China, in 2010, and
the Ph.D. (Hons.) degree from Zhejiang Univer-
sity, Hangzhou, China, in 2015. He was a Visit-
ing Ph.D. Student with Supèlec, Rennes, France,
in 2013, and an Intern Researcher with the China
Mobile Research Institute, Beijing, China, in 2014.
He has authored or co-authored over 20 papers in
his research fields. His research interests currently
focus on green cellular networks, applications of

reinforcement learning, and analysis of cellular network data. He served
as the Web Design Chair of the IEEE OnlineGreenComm 2015, and the
Web & System Chair of the IEEE ISCIT 2011.

ZHIFENG ZHAO received the bachelor’s degree
in computer science and the master’s and
Ph.D. degrees in communication and informa-
tion system from the PLA University of Science
and Technology, Nanjing, China, in 1996, 1999,
and 2002, respectively. From 2002 to 2004,
he acted as a Post-Doctoral Researcher with
Zhejiang University, China, where his research
was focused on multimedia next-generation
networks and soft-switch technology for energy

efficiency. From 2005 to 2006, he acted as a Senior Researcher with the PLA
University of Science and Technology, where he performed research and
development on advanced energy-efficient wireless router, ad-hoc network
simulator, and cognitive mesh networking test-bed. He is currently an Asso-
ciate Professor with the Department of Information Science and Electronic
Engineering, Zhejiang University. His research area includes cognitive radio,
wireless multihop networks (ad hoc, mesh, and WSN), wireless multimedia
network, and green communications. He was the Symposium Co-Chair
of ChinaCom 2009 and 2010. He was the Technical Program Committee
Co-Chair of the 10th IEEE International Symposium on Communication
and Information Technology 2010.

VOLUME 3, 2015 1421



R. Li et al.: Understanding the Traffic Nature of MIM in Cellular Networks

CHEN QI received the B.S. degree in commu-
nication engineering from Zhejiang University,
Hangzhou, China, in 2014, where she is currently
pursuing the Ph.D. degree with the College of
Information Science and Electrical Engineering.
Her research interests include data mining of
wireless networks and green communications.

XUAN ZHOU received the Ph.D. degree in
communication and information systems from
Zhejiang University, Hangzhou, China. From
2009 to 2014, he was a System Engineer with
China Mobile Zhejiang Company. Since 2014, he
has been a Solution Architect with the Service
Provider Operation Laboratory, Huawei Technolo-
gies Company, Ltd. His research efforts focus on
innovative service scenarios in 5G and NFV/SDN.

YIFAN ZHOU received the B.S. degree in
communication engineering from Zhejiang
University, China, in 2012, where he is currently
pursuing the Ph.D. degree with the College of
Information Science and Electrical Engineering.
His research interests include spatial modeling of
wireless networks, stochastic geometry, and green
communication.

HONGGANG ZHANG was the International
Chair Professor of Excellence with the
Université Européenne de Bretagne and Supèlec,
France (2012–2014). He is currently a Full
Professor with the College of Information Science
and Electronic Engineering, Zhejiang University,
Hangzhou, China. He is an Honorary Visiting
Professor with the University of York, York, U.K.
He is also active in research on green communi-
cations. He has co-authored and edited two books

entitled Cognitive Communications-Distributed Artificial Intelligence, Reg-
ulatory Policy and Economics, Implementation (John Wiley & Sons) and
Green Communications: Theoretical Fundamentals, Algorithms and Appli-
cations (CRC Press), respectively. He was a leading Guest Editor of the IEEE
Communications Magazine of the Special Issues on Green Communications.
He is the Associate Editor-in-Chief of China Communications and the Series
Editor of the IEEE Communications Magazine for its Green Communi-
cations and Computing Networks Series. He served as the Chair of the
Technical Committee on Cognitive Networks of the IEEE Communications
Society from 2011 to 2012.

1422 VOLUME 3, 2015


