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INTRODUCTION
During the past decades we have witnessed a
dramatic growth in wireless access along with the
popularity of smart phones, mobile TVs, and
many other wireless services. The ever-increasing
demand for high data rates in the face of limited
radio spectrum resources has motivated the
introduction of cognitive radio (CR), which
opens a potential communication paradigm to
improve spectrum utilization by allowing sec-
ondary users to opportunistically access spec-
trum holes or white spaces unused by primary
users. To enable CR, one fundamental challenge
is how to reliably identify when and where spec-
trum holes exist.

Spectrum sensing and spectrum prediction

are known as two effective enabling techniques
to identify spectrum holes. Briefly, spectrum
sensing determines radio spectrum state (RSS)
using various signal detection methods, which
have been investigated extensively in the litera-
ture (e.g. a survey in [1]). Complementarily,
spectrum prediction infers unknown/unmeasured
RSS from historical known/measured spectrum
data by exploiting the inherent correlation and/or
regularity among them, which has gained increas-
ing attention recently (e.g. a survey in [2]). Spec-
trum prediction has many merits, for example,
reducing sensing time and energy consumption
involved in adaptive spectrum sensing [3] and
increasing system throughput via prediction-
based dynamic spectrum access [4], and so on.

To reap these benefits, a number of spectrum
prediction techniques have been proposed, such
as time series-based prediction, autoregressive
model-based prediction, hidden Markov model-
based prediction, neural networks-based predic-
tion, and Bayesian inference-based prediction,
etc. (e.g. the survey in [2] and the references
therein). However, so far it is not clear what the
upper-bound performance of various prediction
techniques could be for various frequency bands.
Moreover, RSS evolution patterns are generally
determined by people’s usage of radio spectrum.
Although we rarely consider human activity in
the radio domain to be totally random, current
models of RSS evolution are fundamentally
stochastic (see the most widely used continu-
ous/discrete-time Markov chain models in [5]).
Yet the probabilistic nature of the existing mod-
eling framework raises fundamental questions:
What is the role of randomness in RSS evolu-
tion? To what degree are RSS dynamics pre-
dictable?

This article attempts to study the interplay
between the regular (and thus predictable) and
the random (and thus unforeseeable) underlying
real-world RSS dynamics theoretically and pro-
vide certain guidance over how to apply the pre-
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dicted RSS to the design of future wireless com-
munication systems technically. Specifically,
from an information theory perspective, we
introduce a methodology of using statistical
entropy measures and Fano inequality to quanti-
fy the degree of predictability underlying real-
world spectrum measurements and provide some
intuitive thoughts and conclusions. After validat-
ing the fundamental limits of predictability in
RSS dynamics, this article moves forward by
addressing the potential applications of the pre-
dicted RSS in 5G wireless communications.

SPECTRUM DATA DESCRIPTION AND
PREPROCESSING

In order to ensure the reproducibility of the
spectrum prediction analysis in this article for
other researchers, we use a well known open
source real-world spectrum dataset from the
RWTH Aachen University spectrum measure-
ment campaign [5]. In this article we are primar-
ily interested in several popular services,
including TV bands, ISM bands, cellular bands,
and so on. The resolution bandwidth of each
individual spectrum band is 200 kHz. The inter-
sample time is about three minutes, which corre-
sponds to 3360 samples in one week for each
200 kHz spectrum band.1

As an illustrative example, Fig. 1 shows the
evolution trajectories of a one week real-world
RSS, that is, measured power spectral density
(PSD) values, in TV bands. Several interesting
phenomena can be observed. First, the RSS
dynamics for various frequency bands are signifi-
cantly different; several bands are heavily loaded
but others not. Moreover, randomness and regu-
larities coexist in the RSS evolution. Very strong
signals can be identified in several TV bands,
and it appears that the temporal variations of
signals in these bands are not as significant as
those in other bands.

To further show the spectrum utilization of
each 200 kHz spectrum band, Fig. 2 plots the
duty cycle over the frequency under two well
known detection thresholds. One threshold, 107
dBm/200 kHz, has initially been proposed in the
IEEE 802.22 working group for detection of
wireless microphones in 200 kHz channels in the
TV bands; the other more sensitive threshold,
114 dBm/200 kHz, has been specified in the
FCC’s final rules [5]. As shown in Fig. 2, binary
spectrum occupancy (BSO) is highly dependent
on the selection of the specific detection threshold.

Until now, to characterize RSS dynamics,
most of the existing studies have focused on
BSO traces by analyzing the ON and OFF state
evolution over time. Instead, in this article we
will investigate the continuously measured PSD
traces and analyze the predictability of PSD evo-
lution over time, mainly for the following con-
cerns: the PSD is the original raw data, while the
BSO, obtained from the PSD by comparing it
with a detection threshold, inevitably introduces
detection or sensing errors (e.g. false alarms and
missed detections) [6].

SPECTRUM PREDICTION ANALYSIS:
TO WHAT DEGREE IS RADIO
SPECTRUM STATE PREDICTABLE?

In this section we first perform prediction analy-
sis on each individual 200 kHz spectrum band
separately, and then on the entire spectrum
band allocated to each service statistically.

ENTROPY ANALYSIS
For a given spectrum band, let Xi be a random
variable representing its state at time slot i. The
state of this band from time slot 1 to time slot n
is a random variable series X1, X2, …, Xn.
Entropy is probably the most fundamental quan-
tity characterizing the degree of predictability of
a random variable series. In general, lower
entropy implies higher predictability, and vice
versa. Recently, entropy-based analysis has been
introduced in various prediction scenarios such
as atmosphere [7], network traffic [8], and
human mobility [9]. The basic idea is that
entropy offers a precise definition of the infor-
mational content of predictions and it is renowned
for its generality due to minimal assumption on
the model of the studied scenario.

Specifically, to facilitate the following entropy
analysis of RSS dynamics, we first quantize the
PSD values for each individual spectrum band
into Q RSS levels. Then, let S = {X1, X2, …, Xn}
denote the series or sequence of RSS levels
occurred at n consecutive time slots and we have
the following three entropy measures to charac-
terize RSS dynamics:

•Random entropy Erand = log2Q, capturing
the degree of predictability of the given spec-
trum band’s evolution if each RSS level occurs
with equal probability in each time slot.

•Temporal-uncorrelated entropy Eunc =
–Si=1

n pilog2pi, where pi is the probability that the
i-th RSS level occurred in the sequence S. Eunc,

Figure 1. The 3-D view of the evolution trajectories of one week real-world
RSS in the TV bands (614~698 MHz). For each 200 kHz spectrum band,
about 3360 samples one week and thus 480 samples one day are plotted.
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also known as Shannon entropy or classical
information theoretical entropy, is by far the
most often used entropy metric, which character-
izes the heterogeneity of the RSS evolution pat-
terns without taking into account the history of
the process.

•Actual entropy Eactual = –SSiSP(Si)log2P(Si),
where P(Si) is the probability of a particular
time-ordered subsequence Si occurring in the
trajectory of S. Thus, Eactual depends not only on
the occurrence frequency of each RSS level, but

also the temporal order in which the RSS levels
occurred, and it captures the full frequency-time
structure present in a given spectrum band’s rev-
olution pattern. In practice, to calculate the
actual entropy from the historical spectrum mea-
surements, we use an estimator based on Lem-
pel-Ziv data compression [10], which is known to
rapidly converge to the actual entropy of a time
series. For a time series with length n, the
entropy is estimated by Eest

actual = ((1/n)S i=1
n

Li)–1lnn, where Li is the length of the shortest
subsequence starting at the i-th time slot which
does not previously appear from time slot 1 to
time slot i.

Intuitively, we have 0 £ Eactual £ Eunc £ Erand,
which is illustrated in Fig. 3 via analyzing the
real-world spectrum measurements in TV bands.
Extremely, if a spectrum band has actual entropy
Eactual = 0, its RSS evolution is completely regu-
lar and thus fully predictable. However, if a
spectrum band’s actual entropy Eactual = Erand =
log2Q, its trajectory is expected to follow a quite
random pattern and thus we cannot predict it
with an accuracy exceeding 1/Q. As shown in
Fig. 3, all spectrum bands have finite actual
entropies between 0 and Erand, indicating that
not only a certain amount of randomness governs
their future whereabouts, but also that there is
some regularity in their dynamics that can be
exploited for predictive purposes.

Based on the obtained actual entropy, in the
following we aim to quantify the limits of the
predictability of a spectrum band’s next state
based on its trajectory history. That is, we want
to answer the question: How predictable is a
spectrum band’s next state given the entropy of
its historical trajectory?

PREDICTABILITY ANALYSIS
An important measure of predictability is the
probability P that an appropriate predictive
algorithm can correctly predict a spectrum
band’s future state. This quantity is subject to
Fano’s inequality [11]. That is, if an individual
spectrum band with an actual entropy Eactual

evolutes between Q RSS levels, its predictability
P £ Pmax, where Pmax is determined by

Eactual = –[Pmaxlog2P
max + (1 – Pmax)log2(1 –

Pmax)] + (1 – Pmax)log2(Q – 1).

Based on this relationship, for each spectrum
band, we can obtain the upper-bound pre-
dictability, Pmax, through numerical calculations
given Q and Eactual.

As an illustrative example, Fig. 4 shows the
upper-bound predictability Pmax over each 200
kHz TV band separately when the number of
RSS levels is set as Q = 8. For comparison, the
predictability of independent identical distribut-
ed (i.i.d.) Gaussian noise data with one-week
samples is also plotted. We have the following
observations:

•The predictability of real-world RSS data
varies significantly for different spectrum bands.
For example, there are a number of TV bands
with the predictability higher than 0.95, which
means that at most five percent of the time
these spectrum bands change their states in a
manner that appears to be random, and in the

Figure 3. The entropy of the RSS dynamics in TV bands. The number of
RSS levels is set as Q = 8 for each individual 200 kHz spectrum band and
thus the random entropy Erand = log2(Q = 8) = 3 bits.
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Figure 2. Impact of the detection threshold on the duty cycle in TV bands
(614~698 MHz).
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remaining 95 percent of the time we can expect
to predict their whereabouts. On the other hand,
we also see that there are a few TV bands with
predictability lower than 0.9, which means that
regardless of how good our predictive algorithms
are, we cannot predict with better than 90 percent
accuracy the future states of these spectrum bands.

•For all TV bands, the predictability of real-
world RSS data are much higher than that of the
i.i.d Gaussian noise data. This demonstrates that
the temporal correlation or regularity in real-
world RSS data benefits the predictability.

Furthermore, from a statistical perspective,
Fig. 5 shows the cumulative distribution func-
tions (CDFs) for the predictability (with Q = 8)
of various services, including TV bands
(614~698 MHz), ISM bands (2400.1~2483.3
MHz), cellular bands (GSM1800 uplink
1710.2~1784.8 MHz and GSM1800 downlink
1820.2~1875.4 MHz), and 2.3 GHz bands
(2300~2400 MHz).2 We have the following
observations:

•Among all services, TV bands have the
steepest CDF, with minimum predictability of
0.8836. Comparatively, most bands in 2.3 GHz
have relatively low predictability, with the mini-
mum close to the predictability of i.i.d. Gaussian
noise data, 0.7623. ISM bands have a CDF
between TV bands and cellular bands, which
implies that a larger (lower) proportion of ISM
bands have higher predictability than those of
cellular (TV) bands.

•A predictability superiority of the GSM1800
downlink is observed over the GSM1800 uplink
for spectrum bands with predictability levels in
the bottom 70 percent. However, for spectrum
bands with predictability levels in the top 30 per-
cent, a predictability superiority of the GSM1800
uplink is observed over the GSM1800 downlink.
That is, although a majority of the GSM1800
downlink bands have superior predictability,
there are some GSM1800 uplink bands that have
very high predictability levels. This somewhat
conflicting observation might result from the fact
that quite regular patterns of human spectrum
usage exist in few GSM1800 uplink bands.

APPLICATIONS:
5G SPECTRUM SHARING

Radio spectrum usage is an essential issue in 5G
wireless communications [12]. The explosion of
data rates offered by mobile Internet and the
Internet of Things (IoTs) is overwhelming the
allocated 2G/3G/4G radio spectrum. In the past,
new cellular spectrum has typically been made
available through spectrum refarming. However,
clearing radio spectrum from an allocated but
under-utilized usage to repurpose the spectrum
band to another usage often requires many years
to accomplish, which makes it difficult to keep
pace with user demand of gigabit per second
(Gb/s) data rates for 5G [13]. On the other hand,
technological innovations such as millimeter
wave communications and visible light communi-
cations can offer very high data rates; however,
these disruptive technologies are mainly for
small cells and low mobility usage. To provide
wide area cell types, spectrum resources below 3

GHz will be needed [14].
To address these challenges, spectrum shar-

ing is contemplated as the primary candidate,
which has been well recognized as an affordable,
near-term solution to meet 5G radio spectrum
requirements and increase radio access network
capacities for 5G content delivery. Specifically,
5G spectrum sharing is well beyond the previous
studies on cognitive radio-based spectrum sharing,
since one main feature of the latter is the oppor-
tunistic primary-secondary access in unlicensed
bands (such as TV white space). In contrast, as
shown in Fig. 6, 5G spectrum sharing may occur

Figure 4. The predictability in RSS dynamics for TV bands.
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in both licensed bands (e.g. GSM1800 bands, 2.3
GHz bands) and unlicensed bands (e.g. ISM
bands, TV bands). Moreover, one distinguishing
feature of potential 5G spectrum usage is the
diversity, that is, besides the licensed exclusive
access in traditional cellular networks, licensed/
authorized shared access, unlicensed shared
access (known as LTE in unlicensed bands), and
primary-secondary access will coexist [15].

Spectrum prediction will play a significant
role in 5G spectrum sharing. Several potential
applications are described below.

Cost-Efficient Wideband Carrier Aggrega-
tion: To meet 5G capacity requirements, it is
known that no single band or air interface stan-
dard by itself fully suffices, and it is inevitable
for 5G devices to aggregate the benefits of mul-
tiple (non-continuous) spectrum bands of a very
wide range, possibly from several hundreds MHz
bands to 30-300 GHz millimeter wave bands.
Consequently, proactive schemes are expected to
exploit the evolution dynamics of various spec-
trum bands of such a wide range, and enable
wideband carrier selection and aggregation in a
timely and cost-efficient manner.

Dynamic Frequency Selection and Predictive
Interference Mitigation: One dominant theme
for wireless evolution into 5G is network densifi-
cation, which is realized mainly by increasing the
density of infrastructure nodes (such as base sta-
tions and relays) in a given geographic area. It is
anticipated that hyper-dense small cells are
largely privately owned, and of unplanned
deployment. The small cells thus need to be
capable of being configured, optimized, and
healed by themselves to select the communica-
tion frequency bands and not to cause any
noticeable interference to the existing neighbor-
hood networks. The knowledge from spectrum
prediction can be used by the small cells to assist
such autonomous processes through dynamic

frequency selection and predictive interference
mitigation.

CONCLUSION AND DISCUSSIONS
Predicting radio spectrum state evolution has
been gaining increasing attention because of the
explosive growth in demand for dynamic spec-
trum access. In this article statistical entropy
measures and Fano inequality are exploited to
quantify the degree of predictability underlying
real-world spectrum measurements. The results
in this article, serving as the upper-bound pre-
diction performance, can provide a performance
bound of various predictive algorithms and a
general guide to the design of future wireless
communication systems. Notably, it remains a
challenge for the state-of-the-art prediction tech-
niques to obtain prediction precision approach-
ing the upper-bound predictability. Further
improvement in the forecast accuracy of spec-
trum prediction techniques in a real-time mode
are thus required.
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