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INTRODUCTION

Traffic modeling and prediction are at the heart
of the evaluation of the performance of telecom-
munications networks and attract much attention
[1–3]. Yet, conventional research of traffic pre-
diction, although an established field, has been
mostly concentrated on traditional wired broad-
band networks [2] and rarely sheds light on cel-
lular radio access networks (CRANs). But the
situation needs to be changed as the popularity
of mobile devices (e.g. iPhone) and applications
(e.g. Facebook) on them makes the traffic in
CRANs shift from being voice-centric to data-
centric [4]. Meanwhile, the rebuilding of a traf-
fic-aware energy-efficient architecture for
cellular networks is becoming a trend [4–6].
However, since CRANs have more stringent
constraints on radio resources [7], relatively
expensive billing polices and different user
behaviors due to mobility [8] and thus exhibit
distinct traffic characteristics, research results
from wired broadband network traffic cannot be
directly applied to CRANs. Therefore, motivat-

ed by incorporating traffic variations into the
future cellular network design [4], this article
attempts to study and predict the traffic dynam-
ics in CRANs and provide certain guidance over
how to apply the predicted traffic to the design
of future CRAN architecture.

Recently, tools from information theory [9]
have been introduced in various prediction sce-
narios such as atmosphere or climate and given
a considerable number of intuitive conclusions
[10, 11]. The basic idea is that entropy offers a
precise definition of the informational content of
predictions by the corresponding probability dis-
tribution functions (PDFs), and it possesses
good generality because it makes minimal
assumption on the model of the studied sce-
nario. The entropy approach is therefore suit-
able for gauging the traffic predictability based
on certain prior information from history or
from neighboring cells. In this article, with the
help of real traffic records of roughly 7000 base
stations (BSs) in one month from China Mobile,
we use entropy theory to understand the contri-
butions of temporal and spatial dimensions and
the inter-service relationship to traffic prediction
in CRANs and provide some conclusions. Fur-
ther, we describe some practical prediction
means and present the relevant performance.

After validating the traffic predictability, this
article proceeds to address the practical applica-
tions of the predicted traffic. Nowadays, as the
core network architecture is evolving toward
software-defined networks (SDNs) [12], the pre-
dicted traffic could significantly contribute to
network management in this future architecture.
In SDNs, a control plane, which makes traffic
routing decisions, is separated from the underly-
ing data plane, which takes charge of traffic for-
warding. Meanwhile, SDNs provide various open
application interfaces (APIs) to external applica-
tion engines (e.g. access control), and thus facili-
tate network programmability. As a result, the
configuration process in SDNs can become more
flexible and scalable. Besides, traffic knowledge
can be exploited in an easier manner, so as to
optimize routing policies and avoid congested
routers. Inspired by this principle and methodol-
ogy of traffic-aware SDNs, we later provide a
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blueprint for a traffic-based software-defined
CRAN (SDCRAN) architecture and primarily
focus on the potential applications of traffic pre-
diction in this architecture from different scales.

TRAFFIC PREDICTION: 
THEORETICAL ANALYSIS AND
PRACTICAL PERFORMANCE

PREDICTION DATASET DESCRIPTION AND
ANALYSIS METHODOLOGY

In order to smoothly perform prediction analy-
sis, this article collects the anonymous traffic
records of nine mobile switching centers (MSCs)
and serving GPRS switching nodes (SGSNs)
with 7000 BSs. The collected dataset includes all
the calls, short message service (SMS), and data
logs in both rural and urban areas of around
780 km2, serving about three million subscribers.
The duration of the dataset spans from March
2012 to April 2012. The dataset also contains the
fields such as timestamp and cell ID to record
when and where one call/SMS/session appears.
For the services of voice and data, call duration
and transmitted volume are also incorporated in
each record.

After obtaining the massive dataset, a prepro-
cessing procedure is conducted to sort the traffic
records by time and cell ID in the first place,
and then compute voice, text, and data traffic
according to the number of voice (e.g. calls), the
count of texts (e.g. SMSs) and the volume of
transmitted data during a certain period (e.g. 30
minutes) within the same cell, respectively. To
ease the following analysis, the traffic during a
certain period i within a cell is quantized into Q
levels, based on1

Thus, with the quantized traffic values of every
period within each cell, the corresponding traffic
distributions can be obtained. For example, Fig. 1
(Right) depicts the PDF in one cell with respect
to the quantitized traffic and shows that both
voice and text traffic are medium while data
traffic is lower.

The entropy, which Shannon utilizes to mea-
sure the uncertainty of events [9], is defined by a
discrete random variable X with possible values
{x1, … , xn} and the corresponding PDF P(X):

(1)

where b is the base of the logarithm and com-
monly takes the value of 2, when the unit of
entropy is 1 bit. According to this definition of
entropy, traffic distributions, which heavily
depend on the specific location characteristics
(e.g. residential or central business districts, etc.)
and the related user behaviors, lead to distinct
entropy values. Therefore, it is possible to use
entropy to describe the uncertainty of traffic in
CRANs. For example, Fig. 1 (Left) depicts the

traffic variations of two typical cells in one week.
For the cell with the blue dash line, the entropies
for voice, text, and data traffic are 2.1834, 2.1733,
and 1.5472, respectively. In contrast, the other
cell with the red solid line has a comparatively
larger data traffic entropy of 2.0415, which implies
a more volatile traffic variation in this cell.

Meanwhile, the traffic variations illustrated in
Fig. 1 (Left) imply that the traffic of the voice
service varies more dramatically than that of the
others. Indeed, this phenomenon applies to
other cells. Fig. 2 plots the cumulative distribu-
tion functions (CDFs) with respect to the traffic
entropies in the cells. Besides, Table 1 lists a
brief summarization of the entropy calculation
results. Both of them express that, among all the
services, voice traffic has the largest entropy,
with mean of 2.1429 and minimum of 1.0936,
and thus its traffic distribution is more uniform.
Comparatively, data traffic is relatively stable
since the entropy of data traffic is the smallest
and it is lower than 1 bit for more than 70 per-
cent of cells.

Similarly, traffic predictability can be exam-
ined from different perspectives if we depend on
the following different prior information cases
and calculate the conditional entropies:
• Temporal conditional entropy of traffic

based on a certain preceding duration.
• Spatial conditional entropy of traffic based

on adjacent cells.
• A specific service’s conditional entropy

based on traffic of other services.

PREDICTION ANALYSIS: TO WHAT EXTENT IS
THE PRIOR INFORMATION REQUIRED?

Traffic prediction relies on the periodical simi-
larity of the traffic itself and requires a certain
quantity of prior information to reduce uncer-
tainty. Generally speaking, as the amount of
prior information increases, prediction perfor-
mance will be improved. In other words, the
residual uncertainty decreases along with the

=

⋅⎢
⎣⎢

⎥
⎦⎥

i

Q

QuantizedTraffic( )

     
RealTraffic(i)-MinimumTraffic

MaximumTraffic-MinimumTraffic

∑= −
=

H X p x p x( ) ( )log ( ),i b i
i

n

1

Figure 1. (Left) Two typical cells’ traffic in one week with different
entropies. The random entropies of voice, text and data for the cell in the
red solid line are 2.4034, 2.1177, and 2.0415 while the counterparts for the
cell in the blue dash line are 2.1834, 2.1733, and 1.5472. (Right) The corre-
sponding probablity distribution function with respect to the traffic in the
cell in the blue dash line on the left side.
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increase in aggregated prior information. Yet,
this rationale needs further theoretical investiga-
tions. Recall that in [9] the conditional entropy
of two random variables X and Y, which take
possible values {x1, …, xn} and {y1, …, yn} with
the joint PDF P(X, Y), is defined as

(2)

Therefore, as Eq. 2 implies, how to characterize
and measure the residual uncertainty exactly
falls into the scope of conditional entropy.

Temporal Dimension — Researchers have
demonstrated the feasibility of predicting traffic
in broadband networks based on its self-similari-
ty or periodicity [2]. However, these previous
discussions merely focused on a single service
type in the core networks. For CRANs, it is nec-
essary to extend the discussions to all types of
services (i.e. voice, text, and data). This section
aims to answer the question of how long a peri-
od of historical traffic is required for a confident
prediction of future traffic? In other words, what
is the minimum temporal information for a given
conditional entropy constraint?

Figure 2 plots the CDFs of the conditional
entropies in the cells with the previous two and
10 hours of traffic information. As it demon-
strates, by introducing preceding traffic infor-
mation, uncertainty can be reduced effectively.
Moreover, with equal preceding hours of traf-
fic information, the conditional entropies of
voice traffic decrease most rapidly, even though
the random entropy of voice is comparatively
larger. For example, voice’s temporal condi-
tional entropy with two hours of historical
information decreases from 2.1429 bit to 0.5880
bit on average, which indicates that it would
become much easier to trace the variation of
voice traffic, given two hours of temporal infor-
mation. Table 1 further states that when the
historical time increases to 12 hours, voice’s
conditional entropy shrinks to less than 0.1 bit,
a reduction of over 80 percent compared to the
case without any prior information. As a result,
the more historical traffic information is pro-
vided, the more precisely and easily the quan-
tized traffic can be predicted. Additionally,
compared to voice and text services, the tem-
poral conditional entropy of data traffic
degrades slowest when the information of the
preceding hours is adopted. Therefore, it is
more challenging to predict data traffic based
on historical traffic knowledge.

Spatial Dimension — To guarantee a full cov-
erage over the region of interest and ensure
quality of experience all the time, mobile opera-
tors deploy coverage-overlapped adjacent cells,
which in turn lead to some similarities between
traffic in the adjacent cells. Meanwhile, user
mobility behavior adds to the spatial relevancy in
the traffic. In this section we attempt to measure
this spatial relevancy and describe how much
information adjacent cells could provide.

Figure 3 demonstrates how the mean of
spatial conditional entropy varies with the
number of considered adjacent cells. As Fig. 3
illustrates, the traffic knowledge from adja-
cent cel ls  can enhance predictabil i ty .  For
example, by Table 1 the mean of spatial con-
ditional entropy with voice traffic information
from three adjacent cells reduces to 0.9043
bit. As the number of adjacent cells exploited
for traffic information rises, the mean of spa-
tial conditional entropy continues to decline.
On the other hand, slightly less than the con-
tribution of temporal relevancy to traffic pre-
dict ion,  the spatial  factor decreases the
entropy mean to 30 percent, depending on the
traffic information from six adjacent cells.
Similar to the effect of temporal information,
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Figure 2. The cumulative density functions with respect to the correspond-
ing entropies of traffic under the cases: no prior information, two hours’
and ten hours’ information.
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Fig. 3 implies that the relevant spatial infor-
mation exhibits a larger contribution to the
predictability of voice and text traffic than
that of data traffic.

Inter-Service Relationship — As mentioned
above, traffic of the three typical service types
(i.e. voice, text and data) is influenced by several
common factors, such as idle/busy time of a per-
son. Hence, it seems viable to enhance the traf-
fic predictability of one service type by regarding
another as prior information. In the following,
we try to discuss how much positive impact the
traffic of one service type has on predicting that
of another service?

Because of space limitations, we provide the
important entropy values in Table 1 and omit
the corresponding CDFs. As indicated in Table 1,
the traffic of text contributes a lot to the predic-
tion of voice traffic, taking into account the
0.7463 bit decrease in the calculated entropy.
However, the contribution of data to the predic-
tion of voice is negligible as it merely leads to a
reduction of 0.1361 bit. Meanwhile, Table 1 also
indicates that owing to the unique burst charac-
teristics of data traffic, the effect of voice and
text on data traffic prediction is relatively small-
er. Thus, it is reasonable to reach the conclusion
that the inter-service relevancy between data and
voice/text is limited but that between voice and
text could be further exploited to obtain higher
prediction accuracy.

Remarks: 
1 The temporal relevancy is the dominant

contributing factor to traffic predictability. 
2 The contribution of spatial relevancy is

much less, but it also makes sense to traffic
prediction.

3 The inter-service relevancy between voice
and text can be applied to the prediction
problem while the one between data and
the other two types can not.

4 Data traffic prediction can only depend on
temporal and spatial relevancies.

PREDICTION PERFORMANCE: 
THE CURRENT STATE OF RESEARCH?

The previous sections have shown the feasibility
of traffic prediction theoretically and laid a foun-
dation for practical prediction of these three
types of services. Methodologies of traffic pre-
diction fall into two categories [5]. One is based on
a fitting model (e.g. ON-OFF model, FARIMA
model, mobility model, network traffic model,
and alpha-stable model) to explore the traffic
characteristics, such as spatial and temporal rele-
vancies or self-similarity, and obtain the future
traffic by appropriate prediction methods. The
other is based on modern signal processing tech-
niques (e.g. the principal components analysis
(PCA) method, the Kalman filtering method, or
the compressive sensing method2 [13]) to cap-
ture the evolution of traffic.

Figure 4 demonstrates the prediction per-
formance of a temporal compressive sensing
method in [5]. The method takes into account
the temporal similarity in traffic variations and
applies modern signal processing techniques to

solve the prediction problem. Specifically, it
f irst  constructs a traffic matrix using the
already known traffic records in a certain num-
ber of cells, each row of which denotes the
traffic variations in one cell. Afterward, the
traffic matrix is augmented with a null vector,
which indicates the traffic to be predicted.
Consequently, the augmented matrix exhibits
sparsity in two folds. In the first place, the
matrix contains very few unknown entries. Sec-
ond, the traffic variations are somewhat peri-
odical, thus making the traffic matrix have few
dominant eigenvalues. Therefore, the unknown
entries in the matrix can be computed by the
compressive sensing method. Meanwhile, in
order to make a more precise prediction, the
method in [5] also considers the spatial and
temporal relevancies, which have been validat-
ed by entropy theory.

As Fig. 4 describes, the prediction perfor-
mance in terms of the root mean square error
(RMSE) is incrementally improved as the num-
ber of exploited preceding hours increases. That
trend matches both the common sense and our
entropy-based analysis results. Moreover, the
voice traffic can be more precisely forecast, con-
sistent with the conclusion that its temporal con-
ditional entropy is the smallest among the three
types of services. In contrast, forecasting data
traffic is most challenging; it needs more prior
information such as adjacent cells’ traffic to
obtain a precise prediction.

Table 1. A brief summarization of entropy values.

2 As a signal processing
technique for efficiently
acquiring and reconstruct-
ing a signal, compressive
sensing is renowned for
finding solutions to under-
determined linear systems
with relatively few mea-
surements, by taking
advantage of the sparse-
ness or compressibility of
the signal in some
domain. 

Service Calculation 
conditioned on

Entropy

Mean Variance Min Max

Voice

None 2.1429 0.0680 1.0936 2.4539

2 preceding
hours 0.5880 0.0107 0.2051 0.7982

12 preceding
hours 0.0228 0.0013 0 0.1399

3 Adjacent cells 0.9043 0.0581 0.4517 1.7000

Text 1.3966 0.0851 0.5794 1.9836

Data 2.0068 0.0730 1.0841 2.4142

Text and data 1.2956 0.0920 0.5030 1.9339

Text

None 1.8796 0.1552 0.3053 2.4572

12 preceding
hours 0.0353 0.0023 0 0.1775

Voice and data 1.0549 0.0833 0.2743 1.6790

Data

None 0.7785 0.2436 0.0283 2.0535

12 preceding
hours 0.0845 0.0037 0 0.1806

Voice and text 0.5640 0.1242 0.0060 1.5095
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TRAFFIC PREDICTION AND FUTURE
NETWORK ARCHITECTURE:

DIRECTIONS AND APPLICATIONS

We have shown in the previous section that traf-
fic prediction is feasible both theoretically and
practically. With traffic forecasting capability, it
is possible for networks to be configured and
managed more efficiently. For example, Niu [4]
advocated establishing traffic-aware energy-effi-
cient radio access networks, or the so-called
TANGO. One of the key principles in TANGO
is to make the working status of network ele-
ments (e.g. BSs) to be adaptively adjusted
according to the traffic pattern. Specifically,
some BSs or elements of BSs can be tuned into
sleeping mode to save energy when the predict-
ed traffic is negligible, while other BSs expand
their coverage in a coordinated manner. Indeed,
TANGO could be regarded as a special case of
traffic-based network resource reconfiguration
in SDCRANs. Owing to the flexibility of
resource allocation and its considerable agility
to meet explosively increasing traffic demands
[14, 15], we argue that SDCRANs would be the
most potentially suitable future cellular archi-
tecture, in which traffic prediction acts as one of
the dominant factors for on-demand network
management.

BRIEF DESCRIPTION OF THE
TRAFFIC-BASED SDCRAN ARCHITECTURE

The SDCRAN architecture, which is illustrated
in Fig. 5, exemplifies the typical methodology of
the general software-defined core networks3 and
provides a blueprint for data plane and control
plane separation in CRANs. Compared to the
general SDNs, the virtualized network functions
such as routers or switches are replaced by virtu-
alized radio resources in SDCRANs, including
coordinately deployed BSs and antenna systems,
a shared signal processing pool and supporting

systems (e.g. air conditioning), etc. Benefiting
from the global view of the networks provided
by this centralized control plane, the operator
can allocate virtualized radio resources, imple-
ment hangovers, manage interference, and bal-
ance traffic loads [15] more effectively, thus
providing a smoother user experience. Besides,
the SDCRANs, which support various APIs, can
implement different engines in the application
layer of the control plane. Specifically, by estab-
lishing the traffic monitoring/prediction and traf-
fic-based policy engines, the operator can sense
traffic variations and make traffic-aware network
management policies more flexible and adaptive.

LARGE-SCALE TRAFFIC-AWARE
RESOURCE MANAGEMENT

Since the virtualized radio resources are con-
trolled as a whole in SDCRANs, the resource
management concept such as TANGO can be
more effectively implemented to be adaptive to
large-scale traffic variations in the context of
both spatial and temporal dimensions. For exam-
ple, the monitoring/prediction engine can con-
duct an entropy-based analysis to determine the
cell usually with unstable traffic and provides the
related analytical results to the policy engine. As
a result, these traffic-volatile BSs could be
refrained from frequently changing their working
status (active or sleeping mode) when dynamic
BS switching operation policies are applied.

Another case that benefits from the traffic-
related engines in SDCRANs is heterogeneous
RAN-sharing among multiple (virtual) network
operators [14]. In that regard, based on the anal-
ysis results from the traffic monitoring/prediction
engine, network operators can buy the exactly
required amount of radio resources, thus saving
operating expenditure while supplying on-
demand capacity to their customers.

Though large-scale traffic-aware resource man-
agement promises to be viable, an accurately pre-
dicted traffic knowledge would be a prerequisite.
However, as noted above, it is still challenging for
state-of-the-art methods to meet the prediction
accuracy requirements of timely resource manage-
ment. Further improvement of prediction preci-
sion and forecast accuracy in a whole area of
interest in real-time mode is required but is left as
future work, due to limited space.

SMALL-SCALE FLOW-CENTRIC
RESOURCE ALLOCATION

This article has analyzed data traffic as a whole,
without further exploring the detailed character-
istics of the various applications, because of the
limitations of the dataset. Indeed, data applica-
tions (e.g. HTTP browsing, instant messaging,
video streaming) are distinguishable from each
other because of the different characteristics of
their traffic profiles and the need to meet dis-
tinctive transmission (e.g. bandwidth and quality
of service (QoS)) requirements. On the other
hand, the 3rd-generation cellular system (3G)
introduces for each user equipment a radio
resource controller (RRC) state machine, which
determines radio resource usage, affecting device
energy consumption and the user experience.

Figure 4. The root mean square error of predicted traffic versus the number
of exploited preceding hours for traffic prediction.
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Currently, the design of an RRC state machine
is ad-hoc with statistically configured parame-
ters. Therefore, if the traffic patterns of the vari-
ous applications are meticulously discussed and
precisely predicted, finer resource management
can be provided by the policy engine. For exam-
ple, if the traffic monitoring/prediction engine
reports that the CRANs will experience a large
number of traffic flows with loose delay con-
straint, these flows could be offloaded to other
networks (e.g. WiFi) according to the decision of
the traffic-aware policy engine. In this way the
allocation of radio resources (e.g. bandwidth)
will be more effective and different applications
could be catered for with acceptable user experi-
ence and less energy consumption.

CONCLUSION
Predicting the traffic in cellular networks is
becoming increasingly important as the explo-
sively growing demand for radio access drives a
traffic-aware energy-efficient network architec-
ture. In this article entropy theory is exploited to
analyze the feasibility of predicting traffic
dynamics theoretically. The entropy-based analy-
sis validates the spatial and temporal relevancies
in all typical types of service traffic and the rele-
vancy between voice and text traffic. Based on
that, several practical prediction means and the
corresponding performance are presented. Final-
ly, the article discusses traffic-related networking
applications and the contributions of traffic pre-
diction to the design of software-defined cellular
radio access networks.
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