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ABSTRACT

In radio access networks, the base stations’ (BSs) power consumption does not merely depend on the traffic loads within
its coverage. The auxiliary devices, especially the cooling system in BSs, contribute to significant energy exhaustion. As
the traffic loads fluctuate spatially and temporally, the BSs consequently suffer from heavy energy wastage when the traffic
loads of their coverage are low. In this paper, an energy saving scheme over predicted traffic loads is proposed to tackle
this energy inefficiency problem in incumbent radio access networks induced by the fluctuations of traffic loads. The
proposed scheme firstly takes advantage of the spatial–temporal pattern of traffic loads and employs the compressive
sensing method to predict the future traffic loads. Then, a grid-based energy saving scheme is developed to improve the
energy efficiency through turning some BSs into sleeping mode while ensuring the quality of experience. Results of the
simulation with real traffic load statistics finally validate the accuracy of the traffic load prediction and large improvement
of energy efficiency. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With the unprecedented popularity of smartphones and
other mobile terminals, there emerges an explosive demand
for radio network access and incurs large power consump-
tion simultaneously [1]. Furthermore, it is coming to a
consensus that the information and communication tech-
nology (ICT) industry has become one of the major con-
tributors to the world’s power consumption and greenhouse
gas emission. Recent studies show that the ICT industry
accounts for 2 to 10 per cent of the world’s overall power
consumption [2, 3] and it is envisioned that the energy
exhaustion of mobile networks would reach 124.48 kWh
in the year of 2011 [4], and the power bill will doubly
enlarge in 5 years for China Mobile [5]. Beyond that,
increasing awareness of the exhaustion of non-renewable
energy resources also spurs the need to improve the energy
efficiency of telecommunication systems.

In addition to environmental concerns, there are also
economical benefits for cellular network operators to
reduce the power consumption of their networks. The
energy expenditure accounts for a significant proportion
of the overall cost, and cellular network operators would

save a lot in capital and operating expenditure through
improving energy efficiency [6].

Currently, the subscribers cost around 1 per cent of
the overall energy in ICT industry. Comparatively, over
80 per cent of the power consumption takes place in
the radio access networks (RAN), especially the base
stations (BSs) [7]. The reasons lie in that the networks
at present stage are designed for maximum throughput,
and the deployment of BSs is usually optimised for peak
user demand operation. However, there are significant vari-
ations in traffic loads, both temporally and spatially [8]
because the typical day–night division of user behaviour
causes the temporal periodic pattern (tidal effect of traffic
loads), and the spatial difference occurs when people move
between their apartments and downtown districts back and
forth, taking along their mobile terminals. Unfortunately,
the present communication infrastructure’s activities in
reality weakly depend on the amount of the traffic loads,
which means certain heavily underutilised BSs still have to
stay active and consume relatively large amount of energy
even when there is little user accessing requirement, result-
ing in severe energy wastage [9]. Hence, there is a strong
incentive to make the working status of RAN adaptive to
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the traffic loads, in order that the energy efficiency of BSs
can be improved.

Paper Scope and Contributions: In a nutshell, this
paper considers how to dynamically optimise the number
of active BSs, depending on the predicted traffic loads. Fur-
ther speaking, the paper proposes how and when to turn
some BSs into sleeping mode, so as to solve the underutil-
isation problem of BSs and its induced energy inefficiency
in RAN. Thus far, there has been a substantial body of
work towards it. In [2] and [8], the authors propose to
dynamically adjust the BSs based on the traffic loads, but
the authors assume that the traffic loads follow some kind
of mathematical distributions. Therefore, it can not catch
the real traffic characteristics of the network precisely. In
[10], certain BSs’ on/off operations at specific moments
can only occur once within 24 h. Accordingly, the net-
work adaptation operation can not timely follow the actual
spatial–temporal traffic dynamics, leading to user experi-
ence quality degradation. The authors in [11] propose a
snapshot-based global cellular network greening scheme.
To catch the variance of traffic loads, the BSs need to oper-
ate between switching on and switching off frequently,
which results in high computation cost and wastage of
bandwidth for transferring data. In [12], Niu, Wu, et al.
propose a traffic load transferring scheme. However, they
do not consider the underlying coverage adjustment prob-
lem and the increase of energy consumption caused by
zooming coverage, thus merely obtaining a suboptimal
energy consumption result.

A preliminary versions of our results appear in [13] and
[14]. This submission is distinct because of the compre-
hensive analysis of the cause of energy inefficiency in BSs
and fuller and deeper introduction of power consumption
model in RAN. The contributions of this paper lie in that
it employs the spatial–temporal characteristics of traffic
loads and adopts a compressive sensing-based method to
predict the future traffic loads. After attaining the predicted
traffic loads, instead of merely minimising the number
of active BSs, a grid-based scheme is proposed to min-
imise the power consumption of active BSs (GM-PAB)
by balancing the number of active BSs and their coverage
(and also their served traffic loads). Beyond that, to give
an objective assessment for our research, the simulation
is conducted with real traffic load statistics in Hangzhou,
China and validates large energy efficiency improvement.

Paper Organisation: Section 2 covers some back-
ground on RAN and power consumption model of BSs.
Sections 3 and 4 introduce the method for traffic load pre-
diction and the scheme for energy saving, respectively.
Section 5 evaluates our proposed scheme and presents our
simulation results. Section 6 concludes with a summary of
this paper and a discussion of future work.

2. BACKGROUND

The RAN of cellular mobile networks is responsible
for handling traffic and signalling. Figure 1 illustrates a

Figure 1. An illustration of the radio access networks.

typical architecture of RAN in Global System for Mobile
Communications (GSM) network.* As Figure 1 depicts,
RAN connects the subscribers and the core network and
mainly consists of several base station controllers (BSCs)
and their controlled BSs. Usually, a single BSC can take
control of tens or even hundreds of BSs.

As is the concentration of the paper, one BS consists of
a communication subsystem and a supporting subsystem.
The communication subsystem includes antenna array,
remote radio unit (RRU), base band unit (BBU) along with
the fibre-optic cable connecting BBU and RRU as illus-
trated in Figure 2. Each BS may instal several RRUs near
the antennas to provide larger coverage and capacity. BBU
is the main unit and takes charge of all the communication
functionalities: scrambling, modulation, scheduling, adap-
tive coding, link quality measurements, soft handovers,
and so on. The supporting subsystem includes the cooling
system and other auxiliary devices and aims to maintain
an appropriate temperature and sufficiently monitor the
environment. In the viewpoint of power consumption, the
energy exhaustion model of each BS in [8, 15] is adopted,
and it is composed of two categories. One is from the traf-
fic loads transmission, whose power consumption Pt can
be linearly approximated as Pt D P˛ � V C Pˇ with
respect to the traffic loads V [16]. The variance of Pt is
the result of RRU and BBU. For example, RRU has to
support more active links if the traffic loads are heavy,
whereas BBU has to do baseband processing unless the BS
turns into sleeping mode. Moreover, all the other opera-
tions such as signalling control will incur energy overhead
even when the traffic loads are low. As to the coefficient
P˛ , it depends on the transmission distance because one

*It is worthwhile to note here that although the remaining part of the

paper mainly focuses on GSM network, the energy saving scheme in

GSM network can also be applied in third generation and its long-term

evolution networks, given the similarities of RANs of these networks.
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Figure 2. An illustration of communication subsystem struc-
ture of typical base station in Global System for Mobile

Communication network.

BS will exhaust more energy to serve the traffic loads from
longer distance. Meanwhile, there exists certain energy
consumption, owing to the supporting subsystem and some
communication modules, especially the cooling system.
This category of power consumptionPs mainly depends on
the working environment, and thereby, it is almost invari-
ant to the traffic loads. Hence, the supporting subsystem
is assumed to stay constant on a daily basis in the paper.
In this paper, let us denote the constant power consump-
tion as Psteady D Pˇ C Ps , which is irrespective of traffic
loads and contributes to the overall power consumption as
high as 50 per cent [7]. Therefore, the RAN can save a
large amount of energy if some of the BSs are turned into
sleeping mode when few traffic loads exist.

3. COMPRESSIVE SENSING-BASED
TRAFFIC LOAD PREDICTION

3.1. Traffic load prediction model and
literature review

In this paper, it is assumed that there exists a traffic load
vector to timely record the volumes of BSs’ traffic loads.†

Suppose there are n BSs under one particular BSC’s con-
trol. Thereby, there will be an n-length vector as traffic
vector, each of whose elements archives the volume of

†According to our survey, there exists such statistical records on the

volumes of traffic concerning all the BSs because the records will help

make the maintenance more easy. Above all, the assumption is feasible.

one BS’s traffic at one specific moment. For monitoring
purposes, the volumes of traffic loads would be traced peri-
odically to better know the working status of BSs. Hence,
a traffic load matrix is referred to as the set of traffic load
vectors at different moments. For example, Xi ;t in a traffic
load matrix X denotes the volume of traffic of BS i at the
moment t . In other words, every row vector of traffic matrix
denotes the volumes of traffic at one specific BS with
respect to the time, whereas every column vector denotes
volumes of traffic of several adjacent BSs at one specific
moment. Therefore, the traffic load prediction problem can
be interpreted as determining the traffic load vector in the
near future moment � .

Thus far, there are two main streams concerned with
the traffic load matrix prediction. One employs the char-
acteristics of the traffic loads, such as spatial and temporal
relevancies [17, 18] or self-similarity [19], and tries to find
a fitting model (i.e. ON-OFF model [20], FARIMA model
[18], mobility model [21, 22], network traffic model [22]
and alpha-stable model [23,24]) and then adopts an appro-
priate prediction method to obtain the future traffic loads.
The other attacks the traffic matrix estimation problem by
using some modern signal processing techniques, such as
principal components analysis method to study the intrin-
sic dimensionality [25, 26] or Kalman filtering method to
capture the evolution of traffic loads [25, 27].

Because some traffic volumes cannot be recorded
because of the possible overloading of recording server,
the traffic load matrix might be incomplete or inaccurate
in reality. Therefore, the aforementioned prediction meth-
ods suffer and might become infeasible under this scenario.
Consequently, this paper adopts a spatial–temporal com-
pressive sensing-based traffic prediction method, which not
only involves the signal processing technique (i.e. com-
pressive sensing [28]) but also exploits the characteris-
tics of spatial and temporal relevancies. Hence, by taking
advantage of compressive sensing and exploring more
characteristics of traffic loads, our proposed method should
outperform the existing ones.

3.2. Spatial–temporal compressive sensing
and traffic prediction method

3.2.1. Brief introduction of compressive sensing.

In real world, a great many of signals or datasets exhibit
characteristics such as structure or redundancy. To be
more specific, the representation of signals or datasets
contains only a small number of non-zero elements in
some transformation bases. In other words, the signals are
sparse in certain transformation bases. Compressive sens-
ing, which aims to handle these sparse signals problems,
has developed and attracted large attention recently [28].
According to the compressive sensing theory, if the signals
match the sparsity condition, much smaller dimensional
measurements are required for both sampling and recon-
struction of signals or datasets. Meanwhile, compressive
sensing or its usually embedded greedy algorithm is an
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alternative way to solve underconstrained linear inverse
problems as well. It leads to efficient compression, esti-
mation and modelling [29].

In the context of matrix compressive sensing, if one
matrix has very low rank, the spectrum of singular values
of this matrix will be sparse, thus making the matrix have
sparsity. Because the traffic load matrix has certain peri-
odic pattern [8], spatial and temporal relevancies [17, 18]
or certain structure and redundancy [30], the traffic load
matrix can thereby be approximated as a low-rank matrix.
So, compressive sensing can be applied in this traffic load
prediction problem.

3.2.2. Spatial–temporal compressive

sensing method.

Given the potential breakdown of monitoring equip-
ments or overloading of BSs, there might exist some mea-
surement errors or inaccuracies in the recorded volume of
traffic loads. This section focuses on how to find or recover
the absent data from the ‘flaw’ traffic matrix. Later on, it
will be introduced how to extend the proposed idea to the
prediction problem in Section 3.2.3.

Let us denote a low-rank matrix OX , whose entries are
almost equal to those in X , except the missing or inac-
curate values in the latter matrix X . Considering that the
traffic load matrix has certain structure or redundancy, the
approximation matrix OX should have the least rank and
meanwhile satisfy the following equation

min rank
�
OX D LRT

�
s.t. M: � .LRT /DM: �X

(1)

where M is an m � n matrix, the same size with X , and
M: �X is the element-wise multiplication. Moreover, the
approximation matrix OX is replaced with two factorization
matrices L and R, the sizes of which are m� r and n� r ,
respectively. Here, r is a factor involving the factoriza-
tion precision and takes the value far less than min.m; n/.
Because the factorization results L and R contain only
r � .m C n/ entries, far less than m � n ones in X , the
factorization method has fewer unknown entries and con-
tributes to the low-rank approximation. The entries of M ‡

are given by

M.i; j /D

(
0; X.i; j / is missing or inaccurate,

1; otherwise.
(2)

When OX is determined by the factorization result LR,
the missing values in X can be approximated using
their counterparts in OX . Therefore, the only remaining
problem is to solve Equation (1). Unfortunately, the objec-
tive of rank minimization is not convex and is per-
haps not solvable. But under certain particular constraints

‡Because the monitoring equipments record the operating status of

BSs simultaneously, it can be known where and when the traffic load

records are missing and inaccurate.

(i.e. the restricted isometry property in compressive
sensing [26, 31, 32]), the rank minimization problem can
be solved by the following equivalent form:

min kLk2F CkRk
2
F

s.t. M: � .LRT /DM: �X
(3)

where the form k � kF denotes the Frobenius norm, that

is kY kF D
qP

i ;j Y .i; j /
2 is the Frobenius norm for

matrix Y .
Besides, because of the relative low-rank nature of the

original data matrix X and inaccuracy of the measure-
ments, the matrix factorization that perfectly fits the con-
straints may not exactly exist. As a result, the precision of
approximation is also included as a part of the optimization
process. Thus, Equation (3) transforms into

min kM:�
h�
LRT

�
�X

i
k2FC˛

�
kLk2F CkRk

2
F

�
(4)

where ˛ is a weight factor. In this regard, this approach
finds a low rank regularised factorization, which fits the
intrinsic characteristic of the data matrix X . In addition, it
does not strictly ensure the constraints but still keeps the
accuracy by minimising the difference.

When deriving the factor matrices, the alternating least
squares method is adopted by fixing one of the two factor
matrices and optimising the other. The optimization pro-
cess is completed alternatively until the convergence of the
two factor matrices.

Actually, the spatial and temporal relevancies in the
original datasets is exploited to make the approximation
more precise [26]. In temporal dimension, the traffic values
in adjacent moments are often close. Also, in spatial
dimension, the traffic values between neighbouring places
also have some kind of smoothness because of the space
relevancy in some sense. Therefore, after utilising this prior
knowledge to reconstruct the data matrix, Equation (4) can
be formulated as

min kM: �
h�
LRT

�
�X

i
k2F C ˛

�
kLk2F CkRk

2
F

�
C ˇ

���SLRT ���2
F
C �

���LRT T T ���2
F

(5)

where T and S denote the temporal relevancy matrix and
spatial relevancy matrix, respectively. ˇ and � are weight
factors like ˛ as well. These two matrices contain our
prior knowledge about the spatial and temporal structure
of the traffic datasets. The temporal relevancy matrix T
describes the temporal smoothness of the traffic datasets,
which means that the traffic values at adjacent moments
are usually flat. The spatial relevancy matrix S is used to
express the spatial correlation of the traffic data at differ-
ent places. By minimising kLRT T T k2

F
and kSLRT k2

F
,

Equation (5) intends to make the low-rank approximation
inherit the intrinsic temporal and spatial properties of X .
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3.2.3. Traffic load prediction solution.

Previous sections state the way to determine the missing
values in the incomplete traffic load matrix by the com-
pressive sensing-based method. Indeed, the compressive
sensing-based method can be extended to the prediction
problem, where the values prediction problem is similar to
determining the missing values beforehand.

According to different sources of original traffic datasets
and applications, different time and space relevancy
matrices S and T can be set to make low-rank approxi-
mation more real and precise. But for simplicity purpose,
the spatial relevancy matrix is not used when predicting the
network traffic in this paper.

If the known incomplete traffic load matrix is aug-
mented with the traffic load vector at the future moment
� , the future traffic load vector can be achieved follow-
ing the compressive sensing-based algorithm mentioned
earlier. As to the temporal relevancy matrix, after taking
into account the design insight 2 of Peng et al. [8]: at any
time, the traffic load difference in two consecutive days is
less than 20% for 70% BSs, a temporal relevancy matrix
can be constructed as

T D

24 h‚ …„ ƒ2
6664
1 0 � � � �1 � � � � � � � � �

0 1 0 � � � �1 0 � � �

0 0 1 0 � � � �1 � � �
:::

: : :
: : :

: : :
: : :

: : :
:::

3
7775

(6)

This temporal relevancy matrix means that the traffic
datasets of a network at the same moment of two con-
secutive days have similar patterns. Then, by employing
the spatial–temporal compressive sensing method with the
temporal relevancy matrix,§ the traffic loads of future time
can be predicted based on the historical traffic loads and
underlying trends.

4. TRAFFIC PREDICTION-BASED
BASE STATION ENERGY
SAVING SCHEME

Currently, in typical cellular networks, many BSs are
under utilisation at most time of the day, which results in
much energy wastage and heavy energy inefficiency. For
instance, to realise reliable transmission of high quality at
the rare peak time, there might be a great many of BSs
with highly overlapping coverage [33]. For example, as
Figure 3 shows, the dark mobile terminal can be simulta-
neously covered and served by the surrounding three BSs.
Commonly, one of the three BSs is enough to provide com-
munication with acceptable quality of experience (QoE),
thus making the other two BSs under utilisation. Hence,
if the traffic loads can be assembled to only an optimised

§The time relevancy matrix can be chosen as other format, depending

on the computation and precision requirement.

Figure 3. An illustration of the overlapping coverage among
adjacent base stations.

number of BSs (active BSs) according to the predicted traf-
fic loads, the energy inefficiency problem can be solved.
To be specific, after switching off the rest BSs (sleeping
BSs), the active BSs can take advantage of modern tech-
niques such as beamforming to cover the blank space left
by the inactive BSs [12]. When these inactive BSs are
needed because of traffic rebound in the network, they are
switched on again. With this scheme, a great energy effi-
ciency improvement is achieved. Moreover, the BS switch-
ing operations can be maintained in an off-line manner
based on the predicted data beforehand.

4.1. Introduction to basic approach for
base station energy saving

An intuitive solution [11] to solve the energy inefficiency
of BSs is to minimise the number of active BSs (M-NAB)
when some of the BSs has very low traffic loads. Mean-
while, the M-NAB solution needs to guarantee that the
active BSs can serve at least the volume of predicted traffic
loads as well. Thus, the state-of-the-art behind the M-NAB
solution is to transfer all the traffic loads of certain BSs,
which will be turned into sleeping mode, to their adja-
cent ones. At the same time, the solution should also con-
cern and satisfy the capacity requirements. So the M-NAB
solution can be formulated as

min
nX
jD1

sgn

 
nX
iD1

Vi ;j

!

s.t.
Pn
jD1 Vi ;j > OXi ;� ; 8i 2 1 � � �nPn
iD1 Vi ;j 6 Cj ; 8j 2 1 � � �n

Vi ;j D 0; 8.i ; j / … "\ i ¤ j

Vi ;j > 0; 8.i ; j / 2 "[ i D j

(7)

where n denotes the number of BSs, consistent with the
length of traffic load vector. sgn.�/ is the sign function, that
is sgn.x/ D x=jxj if x ¤ 0 and sgn.x/ D 0 if x D 0.
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Moreover, OXi ;� denotes the predicted traffic loads in BS i
at time � , whereas Ci represents the capacity threshold of
BS i . Vi ;j denotes the volume of traffic loads reallocated
from BS i to BS j . " is the set of neighbouring relation
pairs, and every element .i ; j / 2 " denotes BS i and j are
adjacent and ensures the traffic loads originally served by
BS i can be served by BS j . The constraints make sure
that the volume of traffic loads transferred from some BSs
is no less than the corresponding predicted traffic loads,
thus guaranteeing the QoE.

4.2. Grid-based base station energy
saving scheme

The M-NAB solution gives the approach for energy saving
in RAN, but there are several drawbacks in it. First of all, it
does not concern how to adjust the BSs’ coverage to trans-
fer or reallocate the traffic loads. Secondly, the M-NAB
solution does not consider the increased power consump-
tion for one BS to zoom out its coverage or serve larger
volumes of traffic loads. Therefore, a grid-based BS energy
saving scheme is proposed to compensate the drawbacks
of M-NAB.

In the first place, the coverage of every BS is divided as
grids with equal size as Figure 4(a) illustrates. The size of
every grid depends on the precision requirement of traffic
transferring. Because of the coverage of one BS is usually
small, it is assumed that the predicted traffic loads of one
BS will be equally distributed in every grid in its coverage.
Then, the BSs and grids are mapped as the vertices of an
undirected graph G D .V ;E/, which are represented as
triangles and squares, respectively, in Figure 4(b) for the
convenience of representation. The grid (square) k and its
one surrounding BS (triangle) i is connected to form an
edge ei ;k 2 E so long as this grid k is located in the BS
i ’s maximum transmission range. Thus, the N-MAB solu-
tion can be regarded as selectively choosing the edges in
the graph while keeping in mind that the square needs to
connect with one triangle (it ensures that the grid must be
served by one BS). Further, the triangle should be con-
nected with limited squares (it ensures that every BS is
able to provide so many traffic loads). Figure 4(b) illus-
trates the grid-based energy saving scheme. For example,
the subscribers in every grid will finally be served by the
BS connected by the bold line, whereas the two ‘black’ BSs
will be turned into sleeping mode to save energy.

According to the aforementioned description, the
M-NAB solution in Equation (7) can be rewritten as
follows (grid M-NAB or GM-NAB):

min
nX
iD1

sgn

�X
ei;k2E

Iei;k

�

s.t.
P
ei;k2E

Vk;� � Iei;k 6 Ci ; 8i 2 1 � � �nP
ei;k2E

Iei;k > 1; 8k

Iei;k 2 f0; 1g; 8ei ;k 2E

(8)

Figure 4. (a) Grids of base stations’ coverage area and (b) the
logic model.

where Iei;k D 1 indicates ei ;k is included in the optimal
solution, whereas Iei;k D 0 indicates not. Ci is consis-
tent with that in Equation (7), representing the capacity
threshold of BS i . Vk;� denotes the predicted volume of
traffic loads in grid k at time � . Assuming that grid k orig-
inally belongs to the coverage of BS i , Vk;� will equal

the predicted volume of traffic loads OXi ;� divided by the
number of grids within the coverage of BS i . Hereafter,
the subscript � in Vi ;� is dropped for convenience of rep-
resentation. The first constraint guarantees that the traffic
loads distributed to any BS do not exceed its capacity.
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And the second constraint ensures that every grid area can
be covered by one BS.

The GM-NAB solution helps explain how to adjust the
coverage of active BSs, yet it still consider the power con-
sumption of one active BS to be steady. But the practical
situation is that some proportion of the power consump-
tion is relevant to the traffic loads and transmission distance
even though the dominant power consumption is steady as
explained in Section 2. Therefore, edge weight Pei;k in
graph G D .V ;E/ is introduced to denote the power con-
sumption for BS i to serve the traffic loads in its represent-
ing grid k, that is Pei;k D P˛;i � Vk , where Vk denotes the
volume of predicted traffic loads in grid k. Moreover, P˛;i
is the amount of energy consumption per volume of traf-
fic loads, the value of which depends on distance between
BS i and grid k, as discussed in Section 2. Hence, the
GM-NAB solution in Equation (8) can be extended to the
grid-based minimization of power consumption for Active
BSs (GM-PAB):

min
X

ei;k2E

Pei;k � Iei;k

C

nX
iD1

Psteady;i � sgn

�X
ei;k2E

Iei;k

�

s.t.
P
ei;k2E

Vk � Iei;k 6 Ci ; 8i 2 1 � � �nP
ei;k2E

Iei;k > 1; 8k

Iei;k 2 f0; 1g; 8ei ;k 2E

(9)

where Psteady;i denotes the (almost) constant part of power
consumption when BS i is active, which is irrelevant to the
traffic loads.

As there is a sign function in Equation (9), whose
discontinuation makes the equation difficult to solve,
Equation (9) is transformed and solved by

min
X

ei;k2E

Pei;k � Iei;k C

nX
iD1

Psteady;i � Isi

s.t.
P
ei;k2E

Vk � Iei;k 6 Ci ; 8i 2 1 � � �nP
ei;k2E

Iei;k > 1; 8kP
ei;k2E

Iei;k � Isi �Nsi 6 0; 8i 2 1 � � �n
Iei;k 2 f0; 1g; 8ei ;k 2E

Isi 2 f0; 1g; 8i 2 1 � � �n
(10)

where Isi D 1 indicates BS i will remain active in the
final energy saving scheme, whereas Isi D 0 indicates
not. And Nsi is the number of edges connected to BS i ’s
corresponding triangle in graph G D .V ;E/. The newly
added third constraint ensures that when BS i is selected to
enter into sleeping mode (Isi D 0), there is no need for its
service to any grid (all the corresponding Iei;k D 0).

Then, GM-PAB in Equation (10) is a typical binary
integer programming problem, which is usually an

NP-hard problem. Fortunately, there is a vast of mathe-
matical algorithms by providing good approximation solu-
tions, such as primal and dual algorithm [34, 35] and
branch-and-bound algorithm [36]. In our simulation, our
GM-PAB solution is solved by the integration of branch-
and-bound algorithm and primal and dual algorithm
embedded in Mosek Optimization Tools [37], which is a
world-class large-scale linear optimization platform.

5. EVALUATION AND ANALYSIS

5.1. Analysis of traffic load characteristics

To evaluate and testify the algorithm’s performance, one
two-week traffic load records of 64 BSs in Hangzhou
is adopted. Moreover, the interval between two consecu-
tive time moments in the database is 1 h. Therefore, the
traffic load matrix is one 64 � 336 matrix. (Given the
space limitation of the paper, the traffic load matrix is con-
structed by merely augmenting traffic load vectors at dif-
ferent moments, whereas the relationship between spatial
locations and traffic loads of neighbouring BSs is ignored.)
Figure 5 depicts the traffic loads of two typical BSs in
1 week. In Figure 5, it is easily found that the traffic
load matrix of BSs exhibit several characteristics, which
have been described before and are worthwhile to list here.
Firstly, the traffic loads for one specific BS usually follow
daily periodic fluctuations. Secondly, the records might be
incomplete because of the breakdown of the recording sys-
tem or other reasons just like the traffic load record at
the 84th and 146th hour in Figure 5. Thirdly, the traffic
loads at different BSs vary heavily. Certain BSs are under
high utilisation, whereas others have very few traffic loads,
depending on the locations or regions they belong to. These
characteristics are not only the evidence for the assump-
tions in this paper but also the effectiveness guarantee of
the algorithms.

Figure 5. An example of two selected base stations’
traffic loads.
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5.2. Performance of traffic load
prediction algorithm

To evaluate the performance of compressive sensing-based
traffic load prediction algorithm, the following method-
ology is adopted: some existing data are intentionally
hidden, and then, our prediction algorithm is applied on the
pseudo-unknown data. Furthermore, the prediction accu-
racy is measured by the normalized root mean square error
(NRMSE) in the predicted values, namely

NRMSE.�/D

rPn
iD0

�
X.i; �/� OX.i; �/

�2
qPn

iD0X.i; �/
2

(11)

where OX.W; �/ denotes the predicted traffic load vector at
moment � and X.W; �/ is the original traffic load vector. n
denotes the number of BSs.

To better assess the performance of compressive
sensing-based prediction algorithm, the simulations are
independently run twice. All of the two simulations utilise
six-day training database to predict the next-day traffic
loads. As Figure 6 shows, the NRMSE for these two inde-
pendent simulations with compressive sensing-based pre-
diction algorithm is less than 0:3 at most of the time. Along
with the performance of compressive sensing prediction
algorithm, the performance using the prediction method
based on alpha-stable model [23, 24] is also presented in
Figure 6. However, Figure 6 shows that the NRMSE for
alpha-stable processes prediction method varies heavily
with inferior performance. Especially, as the time to be
predicted become longer, the performance may degrade a
lot. The proposed algorithm’s superior performance lies
in that instead of merely utilising the temporal relevancy
to predict the future loads, it also exploits the low-rank
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Figure 6. The normalized root mean square error of two
independent traffic load prediction simulations using spatial–
temporal compressive sensing method (CS) and alpha-stable

prediction method (AS).
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Figure 7. Performance of traffic load prediction using spatial–
temporal compressive sensing method: prediction result for one

selected base station in one simulation.

characteristic of traffic matrix and takes the advantages of
compressive sensing techniques.

Figure 7 shows the approximation precision between
the predicted traffic loads and original data. In the whole,
the performance of the introduced prediction algorithm is
good and stable under different traffic load situations. To be
more specific, the prediction algorithm will provide a good
premise for the introduced GM-PAB solution to make the
communication infrastructure more energy efficient.

5.3. Performance of grid-based base
station energy saving solution

To verify the performance of our grid-based solution, it
is assumed that there are 64 BSs with initially equal size
of coverage (1 km in diameter). And the main parameters
in our simulation are heterogeneous and assumed as fol-
lows [8]: (i) the capacity of each BS is 110 per cent of the
maximum traffic loads for a given BS; (ii) the maximum
transmission range also varies in BSs, and it can be 1.6 and
2 km consistent with many available products; (iii) the con-
stant part of the power consumption Pˇ

¶ can be 2100 and
2800 W; (iv) P˛ differs in 4, 6 and 8 as the transmission
distance varies in 1, 1.6 and 2 km; and (v) depending on the
BS capacity, one third of BSs’ constant power consumption
is 2800 W with 2 km maximal transmission range. Other
BSs’ constant power consumption is 2100 W with 1.6 km
maximal transmission range.

Here, two metrics, namely power saving ratio and
number of active BSs ratio, are defined to measure the
performance of GM-PAB solution and GM-NAB solution.
To be specific, power saving ratio is the power consump-
tion after utilising the GM-PAB or GM-NAB solution
over the original power consumption without any energy

¶The meaning ofP˛ ,Pˇ , and so on have been introduced in Section 2.
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saving scheme while number of active BSs ratio is simi-
larly defined. Figures 8 and 9 present the performance of
our energy saving schemes at each hour of the day in the
case where each BS’s coverage is divided into 64 grids of
equal size and shows the performance is consistent with
the overall traffic load variations. Figure 9 demonstrates
that half of the BSs can be turned into sleeping mode in
the earliest 10 h of the day and save almost 40 per cent
of the power consumption during these first 10 h after per-
forming energy saving schemes as indicated in Figure 8.
Beyond that, if the energy saving schemes are utilised, the
power consumption of the whole day can be reduced as
almost 68 per cent of the consumption before. Especially,
the proposed GM-PAB solution can save 34.6 per cent of
the power consumption, roughly saving 4.3 per cent more
energy over the GM-NAB solution as noted in Figure 8.
The reason for energy saving improvement lies in that if
the number of active BSs is kept as few as possible, certain
BSs have to zoom out their coverage, which in turn leads to
larger power consumption and a suboptimal energy saving

Figure 8. Power saving ratio of GM-PAB and GM-NAB solution
in one whole day and the corresponding traffic loads.

Figure 9. Number of active base station ratio of GM-PAB and
GM-NAB solution in one whole day and the corresponding

traffic loads.

result. Furthermore, whereas the GM-NAB solution dras-
tically change the number of active BSs in the whole day,
the GM-PAB solution can work and adjust more smoothly.

6. CONCLUSION AND
FUTURE WORK

This paper has studied how the power consumption can be
saved by turning some BSs into sleeping mode in RAN,
on the basis of the predicted traffic loads. The traffic loads
of RAN follow some spatial and temporal patterns, thus
making the traffic load matrix satisfy the low-rank prop-
erty. In that regard, the compressive sensing-based pre-
diction method can be employed to forecast the future
traffic loads. According to the prediction result of traf-
fic loads, an energy saving scheme has been proposed by
turning some BSs into sleeping mode while guaranteeing
the QoE, and the solution is finally formulated as a binary
integer programming problem. The simulation results ver-
ified the precision of our prediction method and proved the
effectiveness of our energy saving schemes at last.

In this paper, dynamic BS switching operation schemes
have been developed in RAN on the basis of predicted traf-
fic loads and have shown the potential of improving energy
efficiency. Nevertheless, the operators might be reluctant
to turn off their BSs because of concerns about possible
QoE degradation. In the future, the work can be extended
to design a component-level energy saving technique in BS
operation, which is more conservative than turning BSs
into sleeping mode. However, the technique needs to be
more sensitive to the traffic load fluctuations in order to
timely turn some components into sleeping mode. In other
words, it requires to improve the compressive sensing-
based traffic load prediction method such that a more pre-
cise result can be obtained in a smaller time scale. This will
be carefully addressed in future work.
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