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Abstract: The spatially distributed sparsity of the mobile devices (MDs) in indoor wireless local area networks (WLANs) makes
compressive sensing (CS) based localisation algorithms feasible and desirable. In this Letter, the authors exploit the most recent
developments in CS to efficiently perform localisation in WLANs and design an accurate indoor localisation scheme by taking
advantage of the theory of multi-task Bayesian CS (MBCS). The proposed scheme assembles the strength measurements of
signals from the MDs to distinct access points (APs) and jointly utilises them at a central unit or a specific AP to achieve
localisation, thus being able to alleviate the burden of MDs while simultaneously giving a precise estimation of the locations.
Afterwards, they give a deeper insight into the localisation problem in more practical scenarios with varying number of MDs
and investigate two different adaptive algorithms to meet the satisfactory localisation error requirement. Compared with the
conventional MBCS algorithms, simulation results validate that both adaptive algorithms could provide superior localisation
accuracy and exhibit stronger resilience to the changes in the number of MDs.
1 Introduction

1.1 Motivation

Accompanying with the explosive advancement of
multimedia-rich networking data services, location-based
services (LBSs) have emerged in recent years [1, 2] and
attracted considerable interest and wide applications in
various fields, such as on-line social network [3], remote
healthcare [4], e-commerce [5], personalised information
delivery [6] and so on. Furthermore, location and mobility
information is also being exploited to reduce the energy
consumption in energy-constrained wireless communication
[2, 7] and becomes essential for mobile user management
in seamless and ubiquitous communications. As a result,
researchers come up with numerous techniques to achieve
localisation, with the aid of global position system (GPS)
[8] and base stations [9] etc. Unfortunately, the
cellular-based methods cannot provide adequate accuracy
required in indoor applications [10]. On the other hand,
although widely used in outdoor environment, GPS is often
energy-consumable and not suitable for central urban or
indoor area with heavy building shadowing [11]. In this
light, owing to the ever-growing universal existence of
wireless local area networks (WLANs), some novel
localisation schemes have been proposed by relying on the
received signal strength (RSS) from WLANs to estimate the
locations of mobile devices (MDs). Notably, in spite of
the possibility to adopt other positioning metrics like time
of arrival and angle of arrival [8, 10], RSS is generally the
featured choice in the context of localisation [9, 12–16].
However, because of the effect of noise and channel
impairments, there exists a challenge to cope with the
uncertainty in RSS measurements [16]. Therefore a
Bayesian approach [17] could be exploited by firstly
imposing a probabilistic model on the RSS measurements,
and then trying to obtain the posterior distribution.
In this paper, we assume that the indoor positioning system

can collect the strength measurements of signals from MDs to
access points (APs) in the area of interest and assemble them
at a network central unit (CU) or a specific AP to perform the
localisation in WLANs. This methodology could provide
several advantages. Firstly, the algorithms running on a CU
could alleviate the burden of MDs, which usually have
limited processing power, short battery lifetime and small
memory [18]. Secondly, the location information could be
more conveniently applied, since APs or LBS servers could
directly utilise it to optimise the whole system. Besides,
since the MDs are only located at few places of one large
physical space, the locations of MDs can be regarded as
sparse signals if we view them as a whole. Therefore the
centralised localisation methodology could benefit from a
plethora of existing compressive sensing (CS) algorithms
[19–21], which explore the fact that a small collection of an
originally sparse or compressible signal’s linear projections
contains sufficient information for signal recovery and thus
require far fewer measurements than the Nyquist sampling
theorem to accurately reconstruct the signal.
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Motivated by the discussion above, we design a multi-task

Bayesian CS (multi-task BCS, MBCS) [22] based localisation
scheme. The term ‘multi-task’ implies that this scheme would
take advantage of the intra- and inter-signal correlations of the
RSS measurements at different APs. As a result, it could
decrease the total amount of data required for accurate
localisation. Besides, BCS algorithms are able to provide a
criterion named ‘error bars’ [23] to gauge the accuracy of
the reconstruction vector and make the adaptation of
measurement number possible [24]. Following our previous
works [25], we propose two adaptive MBCS algorithms to
guarantee the effectiveness and accuracy when the number
of MDs varies.

1.2 Related works

Thus far, there exists a substantial body of works towards the
localisation problem in WLANs. In [12], Rizos et al.
collected the RSS measurements and compared them with a
pre-built radio environment map. The estimated position
would be determined by the k-nearest neighbours (KNN)
method, namely the point with the smallest Euclidean
distance to the centroid of KNN in the map. In [10], Kushki
et al. modified the KNN scheme and proposed a kernel-based
technique to improve the positioning accuracy. As for
CS-based localisation schemes, Zhang et al. [14] showed
the corresponding feasibility theoretically. Meanwhile,
researchers implemented their CS-based localisation
schemes on experimental networks [15, 16]. For example,
Au et al. [16] utilised CS to localise the position of one
MD and exploited Kalman filtering to track the
corresponding movement. However, these schemes [14–16]
suffer from the uncertainty in RSS measurements and could
not adapt to the varying number of MDs. Besides, they are
still carried out on the MDs by averaging the RSS values,
incurring indispensable yet energy inefficient pre-processing
procedures such as AP selection [14] and orthogonalisation
[15]. Nikitaki and Tsakalides [18] intended to bypass these
procedures by addressing the localisation problem on the
AP side. However, the authors did not consider the intra-
and inter-signal correlations in the RSS measurements and
provided no criterion to determine the sufficient number of
measurements as well.
The rest of this paper is structured as follows. In Section 2,

we give an introduction to the fundamentals of CS theory and
describe the relevant MBCS framework. Section 3 presents
the system model and formulates our compressed sensing
based localisation scheme. Sections 4 and 5 provide two
adaptive algorithms and present the corresponding
simulation results. Finally, Section 6 concludes our works
and offers our future research direction.

2 Basics of Bayesian compressive sensing

2.1 Compressive sampling process

The Nyquist sampling theorem demonstrates that signals,
images, videos and other data can be exactly recovered
from a set of uniformly spaced samples taken at the
so-called Nyquist rate, which is twice the highest frequency
in the signal of interest [26]. However, the resulting
Nyquist rate in most situations is redundant such that we
end up with far more necessary samples. The recently
developed theory of CS states that if a real-world signal has
a sparse representation in a certain transform bases, then it
is possible to recover the signal with significantly fewer
IET Commun., 2014, Vol. 8, Iss. 10, pp. 1736–1744
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samples or measurements as required by the Nyquist rate.
In this section, we give a brief review of the theory of CS.
Consider a signal x [ RN×1, which can be represented in

terms of N ×N transform basis Ψ such that

x =
∑N
i=1

sici = Cs (1)

The signal x is called K-sparse if its sparse representation s
has at most K non-zero entries

(
s‖ ‖l0 ≤ K

)
, where K ≪ N

and the l0-norm s‖ ‖l0 of the vector s is defined as the
number of its non-zero components.
Consider a linear projection process that computes M <N

inner products between x and a set of N × 1 vectors {fj}
M
j=1

as in yj = fT
j x, where {·}T represents the transpose

operation. Collect the measurements yj and form an M × 1
vector y, by arranging the projection vectors {fT

j }
M
j=1 as

rows of an M ×N measurement matrix Φ. After substituting
x with (1), the whole projection process can be represented
as follows

y = Fx+ 1 = FCs+ 1 = Qs+ 1 (2)

where Θ =ΦΨ is an M ×N matrix and ε = [ε1, ε2, …, εN]
T

represents the noisy environment effects with each entry εi
being a zero-mean Gaussian random variable with variance
σ2. The CS theory aims to solve this under-determined
problem and find an appropriate x satisfying (2).

2.2 Recovery solutions in compressive sensing

In this section, we detail the recovery solutions in CS.
Actually, traditional techniques like least-square algorithms
[27] could not readily handle the under-determined problem
in (2), since the knowledge of the non-zero element
positions of x is usually unknown beforehand. Hence, rather
than requiring the knowledge of zeros element positions, the
recovery algorithms in CS solve this under-determined
problem by the means of greedy algorithms [28, 29].
Tsaig and Donoho [30] state that if M ≥ 2K, the recovery

problem, under specific conditions, could be treated as
follows

ŝ = arg min
s

s‖ ‖l0 s.t. y−FCs
∥∥ ∥∥

l2
≤ e (3)

However, (3) requires to solve a non-convex problem which
is usually ‘NP-hard’. In [31], it has been proved that we
can approximate the aforementioned l0 optimisation
problem by its l1 relaxation [For an integer real number p≥
1 and a vector z, the corresponding lp-norm z‖ ‖lp equals∑

i |zi|
p( )(1/p)

.] with a bounded error only if the matrix Θ =
ΦΨ satisfies the restricted isometry property (RIP)

ŝ = arg min
s

s‖ ‖l1 s.t. y−FCs
∥∥ ∥∥

l2
≤ e (4)

Here, a matrix Θ is said to conform to the RIP for order K
with constant δK∈ (0, 1) if

(1− dK ) c‖ ‖2l2 ≤ Qc‖ ‖2l2 ≤ (1+ dK ) c‖ ‖2l2 (5)

for any N-length vector c satisfying c‖ ‖l0 ≤ K . Although
designing and evaluating a suitable measurement matrix Φ
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to ensure the RIP forΘ =ΦΨ is challenging, there fortunately
exists a large set of matrices that have proven to obey the RIP.
Generally, if Φ is a random matrix with identical
independently distributed (i.i.d.) Gaussian or Bernoulli
entries or a matrix made up of randomly selected rows of
an orthogonal matrix [e.g. the discrete Fourier transform
(DFT)], the RIP would be satisfied [32]. Typically,
conditioned on the RIP, the recovery problem in (4) could
be solved by techniques such as basis pursuit (BP) [29],
orthogonal matching pursuit (OMP) [28] and OMP’s
variants [14]. Although recovery through l1 optimisation
proves to provide highly accurate solutions, the algorithms
above often incur high computational complexity as well.
On the other hand, the problem could be solved from a

Bayesian prospective as well. Compared with the
aforementioned greedy algorithms, Bayesian compressed
sensing (BCS) [23] recovers the signal based on the
posterior probability instead of a single value and could
yield better performance in reconstruction with noisy
measurements y in terms of l0-norm [33]. Therefore we
apply the BCS algorithm to our localisation problem.
Moreover, in order to combat the negative fading and
shadowing effect on measurements and achieve even better
recovery performance, we take into account the intra- and
inter-signal correlations and adopt an MBCS framework
[22]. Specifically, let us assume there are P sets of CS

measurements {yi}
P
i=1, projected from P sets of original

compressive signals {xi}
P
i=1, namely

yi = Fixi + 1i = FiCisi + 1i = Qisi + 1i,

∀i [ {1, . . . , P} (6)

where each xi [ RN exploits a disparate random

measurement matrix Fi [ RMi×N to derive yi [ RMi

, with

every sparse vector in {si}
P
i=1 similar or equal to each other.

1i [ RMi

denotes Gaussian noise and if P = 1, (6) would be
simplified into (2), namely a single-task case. Obtained
from repeated P experiments on similar scenarios or the
same type of tasks, MBCS algorithm could collect a subset
of highly correlated measurements, which is exactly suitable
for the case of RSS-gathering process in our localisation
scheme and contributes to the information-sharing between
tasks.
Commonly, εi can be modelled as an Mi i.i.d. zero-mean

multivariate Gaussian random variable with variance s2
0. As

a result, conditioned on si and l0 = 1/s2
0, the likelihood

function for yi in (6) could be formulated as

p(yi|si, l0) = (2p/l0)
−Mi/2 exp − l0

2
yi −Qisi

∥∥ ∥∥2
l2

( )
,

∀i [ {1, . . . , P} (7)

The difficulty towards applying BCS lies in the typically
intractable computation of the posterior probability function
[34]. Hence, we are forced to accept some approximations
and establish a hierarchical prior to the sparse vectors [23].
In MBCS, we just assign a common prior with common
hyperparameters λ = [λ1, …, λN] to si and connect several
recovery tasks together [23]

p(si|l) =
∏N

j=1
N (sij|0, l−1

j ), ∀i [ {1, . . . , P} (8)
1738
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whereN ( · |0, l−1
j ) represents the Gaussian distribution with

zero mean and variance l−1
j . By the Bayes’ rule, the posterior

probability function for {si}Pi=1 can be derived by using (7)
and (8), namely

p(si|yi, l, l0) =
p(yi|si, l0)p(si|l)

p(yi|l, l0)

= (2p)−(N+1/2) Si
∣∣∣ ∣∣∣−(1/2)

exp − 1

2
(si − mi)T(Si)−1(si − mi)

( )
(9)

with mean and covariance given by

mi = l0S
i (Qi)

T
yi, S i = (l0 (Q

i)
T
(Qi)+ L)−1,

L = diag(l1, l2, . . . , lN ) (10)

Subsequently, we have to estimate the hyperparameters λ and
λ0 in order to obtain the posterior probability function. The
estimates for λ and λ0 can be derived by maximising the
logarithm marginal likelihood

L(l, l0) =
∑P
i=1

log p(yi|l, l0)

=
∑P
i=1

log

∫
p(yi|si, l0)p(si|l) dsi

= − 1

2

∑P
i=1

Mi log 2p+ log C i
∣∣ ∣∣+ (si)T(C i)−1si

[ ]
(11)

with the unit matrix I and

C i = l−1
0 I +QiL−1(Qi)T, ∀i [ {1, . . . , P} (12)

Afterwards, differentiate (11) with respect to λ and λ0,
respectively, and then set the results to zero, yielding

lnewj =
P − lj

∑P
i=1 S

i
(j, j)∑P

i=1 S i
j

( )2 , ∀j [ 1, 2, . . . , N{ } (13)

and

lnew0 =
∑P

i=1 (M
i − N +

∑N
j=1 lj

∑i
(j, j) )∑P

i=1 yi −Qimi
∥∥ ∥∥2

l2

(14)

Note that λnew and lnew0 are functions of {mi}Pi=1 and {S i}Pi=1,
whereas {mi}Pi=1 and {S i}Pi=1 are pertinent to λ and λ0 in
(10). So we can alternatively iterate between (10), (13) and
(14) until convergence. In this process, Wipf et al. [34]
notes that in order to maximise the likelihood in (11), some
entries of λ tend to infinity, which in turn means the
corresponding entries in μi tightly approach zero. In other
words, the algorithm finally finds sparse vectors {si}Pi=1 and
could estimate the location vector in terms of the average of
{mi}Pi=1. Besides, since the update of λnew requires the
knowledge of the whole set {mi}Pi=1 and {S i}Pi=1, MBCS
ommons Attribution
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Fig. 1 Localisation scenario in wireless local area networking
environment
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algorithm implicitly exploits the intra- and inter-correlations
in the RSS signal measurements.

3 BCS-based localisation scheme in WLANs

3.1 System model and problem description

In this paper, we primarily focus on a localisation scenario
(Fig. 1) with a set of N non-overlapping grids. Meanwhile,
the area of interest is covered by P APs and K MDs
equipped with WLAN adapters. As mentioned in Section 1,
the locations of the MDs can be estimated by comparing
the current RSS measurements with a pre-set radio
environment map of this area by the CU in the ‘backbone’
network. Here, the radio environment map, which is
assumed to be readily generated, refers to a table of
pre-measured RSS readings of a similar device
corresponding to every grid of the area.
For clarity of representation, let an N-length vector

0, 0, 1 · · ·[ ]T [ RN×1 denote the logical location of an
MD. To be specific, if the MD is located in the ith [(i∈
{1, …, N})] grid, the corresponding ith element in the
location vector would equal ‘1’. Therefore, if there exist
K ≪ N MDs in the area of interest, the location vector
s [ RN×1, which needs to be estimated, contains K entries
equalling 1. Thus, the location estimation problem could be
reformulated into a sparse signal recovery problem, due to
the facts that an MD can be reasonably located in exactly
one of the grids within the whole area of interest and the
number of MDs is very comparatively smaller than that of
the grids in aggregate.
Although a number of available methods can be utilised to

carry out the comparison between the RSS measurements and
the radio environment map, we choose the BCS-based
scheme to incorporate the inherent sparsity feature of the
localisation problem and seek for the best matching, which
will be verified to be more accurate and more efficient, lately.
3.2 BCS based localisation

Given the property of sparseness in the localisation scenario,
the CS-based algorithms or their variants can be applied here.
In this section, we would demonstrate how our BCS-based
localisation scheme could accurately locate the MDs in a
noisy environment with an optimal number of measurements.
In our BCS-based scheme, instead of the common

transform bases such as DFT basis and discrete wavelet
transform basis, we finally decide to choose the radio
environment map matrices {Ci}Pi=1 as the projection
matrices, after taking into account the obvious sparse
structure of the corresponding location vector s. For each
column vector of the radio environment map matrix Ψi,
ci
j [ RN denote the vector of collected RSS samples at grid

j from the ith AP, wherein N indicates the sampling length
and entries of ci

j should be different because of the fading
and shadowing effect. By means of concatenating the
vectors for all the N grids, a CU will construct a single
matrix Ci [ RN×N for the ith AP. Therefore the actual
signals at the AP side can be expressed as a linear
combination of several columns of Ψi. In other words, the
received signals xi are the multiplication product of the
radio map matrix Ψi and the N × 1 location vector s, which
means that {si}Pi=1 in MBCS are the same and equal s.
Now, assume that every AP has collected a train of RSS

measurements from MDs at unknown locations. Then,
IET Commun., 2014, Vol. 8, Iss. 10, pp. 1736–1744
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considering the tremendous amount of measurements and
the corresponding inherent sparsity property, each AP, say
AP i would sample Mi measurements out of xi [ RN from
every MD according to the measurement matrix
Fi [ RMi×N and feedback them to the CU via backhaul
link. When the incoherent measurement process completes,
the overall RSS measurements for MDs associated with the
ith AP can be described using (6) at the CU side, where P
is the number of APs in this area and εi represents the
Gaussian noise. Φi takes the standard Gaussian matrix with
its columns normalised to unit norm, thus guaranteeing the
required incoherence between Φi and Ψi to meet the RIP.
Finally, the P sets of measurements yi can be used jointly to

recover the location vector. Therefore we can simply take
advantage of MBCS in Section 2 to solve this
reconstruction problem. After completing reconstruction
process, the locations of MDs can be precisely determined
based on the average of {mi}Pi=1.
4 Adaptive multi-task CS algorithm for
localisation in WLANs

The previous sections have addressed the means of
BCS-based localisation scheme in WLANs. Yet, the
varying number of MDs in mobility oriented networks
makes it challenging to accurately determine the required
measurement number in prior and thus suffering to directly
adopt the BCS-based localisation scheme. Meanwhile, the
criterion, which measures the localisation error and balances
whether the current measurement is sufficiently precise, is
worthy to know. However, it is still unavailable in the
previous localisation researches. In this section, we take
into the aforementioned considerations and aim to tackle
how to achieve the optimal measurement number for
location reconstruction, by deriving an adaptive multi-task
BCS algorithm, or the AMBCS algorithm.
Recall that, the location vector s is finally estimated as the

average of {mi}Pi=1 or the mean of a multivariate Gaussian
distribution in (9). Indeed, the distribution also provides a
by-product, namely the covariance Σ i in (10), which can be
interpreted as ‘error bars’ in [23, 35]. As the name suggests,
1739
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Fig. 2 Adaptive multi-task compressive sensing (AMBCS)
algorithm for localisation in WLANs
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the ‘error bars’ could be applied as a metric on the accuracy of
the recovered location vector ŝ and furthermore as a criterion
to decide how many measurements are necessary. Intuitively,
if the value of ‘error bars’ is larger than anticipation, it implies
that the recovered vector still remains quite uncertain and it
needs more RSS measurements to meet the accuracy
requirement. On the opposite side, if the ‘error bars’ are
smaller than expected, which means the measurements are
already sufficient, then we could attempt to decrease the
number to reduce the possibly unnecessary redundant
measurements.
These insights inspire us to understand the impact of

measurement number on the uncertainty for localisations or
the ‘error bars’. Beforehand, we need to define the formal
definition of ‘error bars’.

Definition 1: For each task i∈ {1, …, P} in an MBCS
algorithm, the ‘error bars’ is defined as the determination of
the corresponding covariance S i

v in Lemma 2.
Indeed, we observe that the increase in measurement number
could theoretically contribute to reduce the ‘error bars’.

Theorem 1: Given a set of hyperparameters λ and λ0, a radio
map matrix {Ci}Pi=1 and Mi measurements {yi}Pi=1 generated
based on a current measurement matrix {Fi}Pi=1, for any i∈
{1, …, P}, if another (Mi + 1)th measurement yiMi+1 is
sampled out of xi according to a new measurement vector
{ri}T, the uncertainty for recovering the location vector s,
which is measured by the ‘error bars’ det(Si

v), would
certainly decrease.
We leave the proof of Theorem 1 in Appendix. Furthermore,
the corresponding proof offers the following corollary.

Corollary 1: To decrease the ‘error bars’ to the possibly least,
for any i∈ {1, …, P}, the newly added measurement vector
ri, on which a new sample is based, should be
rio = argmax

r
rTCi(S i)(Ci)Tr.

Remark: Theorem 1 tells that according to the ‘error bars’, it is
feasible to exploit the AMBCS algorithm to obtain a
satisfactory localisation accuracy by dynamically increasing
or decreasing the number of measurements. Besides, based
on Corollary 1, the AMBCS algorithm could be further
modified to decrease the ‘error bars’ at a faster pace.
Specifically, in order to achieve the maximum of
(ri)TΨi(S i)(Ψi)Tr, we can design the new measurement
vector rT, by performing an eigen-decomposition of the
matrix Q =Ψi(S i)(Ψi)T and assigning the eigenvector with
the largest eigenvalue to r. Hence, the rate, at which the
uncertainty of the recovered location vector diminishes,
could be optimised. By merging this adaptive idea to the
localisation problem, we could design a greedily adaptive
MBCS (GAMBCS) algorithm, which could save the
computational cost of repetitively adding the measurements
and performing the MBCS operations.
Finally, we summarise the AMBCS algorithm for localisation
in Algorithm 1.
5 Simulation analysis and numerical results

In this section, we verify the localisation performance of our
proposed BCS-based algorithm and its variants, by simulating
in an area of 20 m × 20 m with discretised grid size of
1.0 m × 1.0 m. Correspondingly, the length of the location
vector would be N = 400. Moreover, we assume there exist
1740
This is an open access article published by the IET under the Creative C
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P = 6 APs altogether in this Gaussian noise-corrupted
environment. For ease of comparison, we assume the
number of CS measurements Mi for each AP i (each task i)
is equivalent. Meanwhile, we adopt the indoor signal
propagation model in [36] to calculate the collected RSS at
the AP side. Besides, all the simulation results presented
hereafter are an average of 100 independent Monte Carlo
runs.
On the other hand, we evaluate the performance based on

the mean localisation error (MLE), which is defined
between the recovered and corresponding original location
vectors (e.g. { ŝi }Pi=1 and {si}Pi=1) as follows

MLE = 1

P

∑P
i=1

ŝi −si
∥∥ ∥∥

l2

si‖ ‖l2
(15)

Meanwhile, we calculate the ‘normalised error bars’ (NEB)
for MBCS algorithm by (Fig. 2):
Equation (16) to take into account the localisation variance

of recovered location vectors

NEB = 1

P

∑P
i=1

det(S i
v)

( ) 1/ ŝi
∥∥ ∥∥

l0

( )
(16)

Here, the 1/ ŝi
∥∥ ∥∥

l0

( )
order of det (S i) makes it possible to

avoid the negative influence incurred by the varying
number of MDs.
Firstly, Fig. 3 presents an illustration of localisation

performance for the MBCS algorithm and AMBCS
algorithm. Therein, every AP collects 60 RSS
measurements interfered with zero-mean Gaussian noise
power (σ0 = 0.005) and feedbacks them to the CU. It can be
observed that the MBCS algorithm could provide almost
precise results. However, because of the increase in
localisation variance (heavier colour) at the static number of
measurements in the MBCS algorithm, the localisation
confidence would be impaired when more MDs emerge.
However, the proposed AMBCS algorithm could offer the
result with nearly the same confidence when the number of
MDs varies.
ommons Attribution
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Fig. 3 Localisation performance in three scenarios for the MBCS algorithm (a) and the AMBCS algorithm (b)

Circles represent the real locations of MDs, whereas the dotted ones represent the estimated locations and the corresponding colour reflects the value of localisation
variance by (16)
a MBCS algorithm
b AMBCS algorithm

Fig. 4 Localisation performance against varying number of
measurements for the algorithms when there exist 10 MDs and
noise power σ0 = 0.005

For AMBCS and GAMBCS, the initial number of measurements is varying
and the NEB is set to be 70

www.ietdl.org
Fig. 4 compares the MLE metric-based localisation
performance among algorithms such as MBCS, AMBCS,
GAMBCS, single-task BCS (SBCS), single-task BP (SBP)
and single-task OMP (SOMP). Notably, it is worthwhile to
note here that the single-task algorithm means that every
AP aims to separately recover the location vectors,
depending on its own measurements, and the algorithm
finally obtains the final estimation result by combining and
averaging them. Fig. 4 shows the localisation error
decreases by collecting more measurements. Besides,
MBCS algorithm could yield a significantly better
performance using the same number of measurements by
taking advantage of the shared knowledge in inter-AP
measurements. Moreover, we also examine the localisation
performance of both adaptive algorithms when the initial
number of measurements is varying and the threshold for
NEB is set to be 70. We can find when the number of
measurements is small, the adaptive algorithms could
provide superior performance than MBCS by dynamically
adding more measurements.
Fig. 5 continues the evaluation under the same scenario

assumptions using MBCS algorithm and shows that
IET Commun., 2014, Vol. 8, Iss. 10, pp. 1736–1744
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Fig. 5 Relationship between MLE and ‘NEBs’ when the MBCS
algorithm is used and noise power σ0 = 0.005

Fig. 7 Localisation performance of the AMBCS algorithm against
the number of working APs when there exist 10 MDs and 60
measurements are sampled for the CU

www.ietdl.org
the MLE performance monotonically varies along with the
NEB performance. Besides, it can be observed that the
curves under different number of MDs are tightly close
while exhibiting the same varying trend. Consequently,
given that MLE could not be obtained in practical
scenarios, NEB could be a strong alternative and help to
determine the necessary number of measurements for a
reliable localisation performance.
Previous simulations demonstrate the superior localisation

performance of AMBCS and GAMBCS in the scenarios
where the number of MDs is steady. Here, we examine the
response of our adaptive algorithms to varying number of
MDs. We set the initial number of measurement and NEB
to be 50 and 70, respectively. Hence, according to Fig. 5,
the default value (e.g., 70) for ‘error bars’ implies that if we
adopt the MBCS algorithm the MLE will be below 0.055
and the final number of measurements will require 70–90,
depending on the exact number of MDs. During the
simulation process, we assume another five MDs emerge at
the sixth slot and disappear at the eleventh slot. The
corresponding localisation performance is plotted with both
Fig. 6 Localisation performance as a function of varying number
of MDs for AMBCS and GAMBCS when initial number of
measurements is set to be 50, NEB is set to be 70 and noise
power σ0 = 0.005
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adaptive algorithms in Fig. 6. It can be observed in Fig. 6,
the adaptivity of both algorithms could be well accustomed
to the sudden appearance of MDs without deteriorating the
performance. Specifically speaking, the NEB in the
localisation process would exceed the threshold when more
MDs emerge. As a result, every AP will automatically
sample more measurements to the CU according the
method inside. For example, the AMBCS algorithm
requires another 16 measurements to meet the NEB
requirement (e.g., 70) and gradually reduce the
measurements once they become unnecessary. Meanwhile,
because of the greed choice of added observation vector,
GAMBCS algorithm only requires another 2 measurements,
but it offers slightly inferior performance.
In Fig. 7, we examine the impact of working APs on the

performance of the AMBCS algorithm. We can find
the loss of APs only causes limited negative impact on the
corresponding performance. Moreover, AMBCS with fewer
APs could still offer superior performance than MBCS,
benefiting from the adaptation inside. Fig. 8 presents the
Fig. 8 Localisation performance as a function of increasing noise
power (σ0) for MBCS, AMBCS, GAMBCS, SBCS, SBP and SOMP
when there exist 10 MDs and 60 measurements are sampled at the
CU side
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localisation error under different signal-to-noise ratio (SNR)
levels. Each measurement is corrupted by Gaussian noise.
The proposed MBCS algorithm outperforms much better
than the single-task algorithms, especially in the low SNR
environment. Moreover, both adaptive algorithms achieve
even better results.

6 Conclusion and future works

In this paper, we designed an MBCS localisation scheme to
estimate the locations of MDs more accurately. Specifically,
we explored the intra- and inter-signal correlations of the
RSS measurements and exploited the common structures
between different tasks to achieve more precise localisation.
Moreover, we proposed two adaptive algorithms to
dynamically determine the necessary number of RSS
measurements, by virtue of the theoretically validated
criterion ‘error bars’. The simulation results further verified
that both the proposed algorithms could achieve superior
localisation performance, compared with conventional
MBCS algorithms.
Although our BCS-based scheme has showed the accuracy

and effectiveness by simulations, it is still worthwhile to
validate it in practical experimental networks. Therefore we
are dedicated to handle the related meaningful works in the
future.
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9 Appendix

9.1 Proof of Theorem 1 and Corollary 1

Firstly, we give a lemma in the field of information theory,
which bridges the link between covariance and differential
entropy [37] and implies why the ‘error bars’ could offer
the informational uncertainty of our localisation problem.

Lemma 1: For a multivariate Gaussian distributionN (f ) with
mean value μf and covariance Σf, the differential entropy for a
continuous distribution p(f), which is defined as
H(f ) = −

�
p(f ) log p(f )df , would equal H(f) = (1/2)log

|Σf| +C. Here, C denotes a constant independent with the
distribution N (f ).
Moreover, as detailed in the following lemma, {S i}Pi=1 in
(10) could turn into a positive definitive matrix {Si

v}
P
i=1

after limited number of elementary algebraic transforms [38].

Lemma 2: After limited number of elementary algebraic
transforms, for any i∈ {1, …, P}, Σi in (10) could be
reformulated as

Si � S i
v 0

0 0

[ ]
(17)

Proof:Without loss of generality, we omit the superindex i in
Σ i during the proof. As discussed in the end of Section 2,
certain elements in λ tend to be infinity [34]. Consequently,
after limited elementary transforms T , Λ in (10) could be
reformulated as

L � Lv 0
0 Linf

[ ]
(18)

Meanwhile, there only exists a set sv of non-zero recovered
entries in s. Thus, we could only consider the |sv| column
vectors of transform basis Ψ, one of which exactly
corresponds to the RSS measurements from one estimated
MD location to the AP. By the same elementary transforms
T , Ψ can be represented as

C � Cv Cinf

[ ]
(19)

Therefore, after the same transformation T , Σ can turn into

S � l0
CT

v

CT
inf

[ ]
FTF Cv Cinf

[ ]
+

Lv 0

0 Linf

[ ]( )−1

= A W l0C
T
vF

TFCv +Lv B W l0C
T
vF

TFCinf

C W l0C
T
infF

TFCv Linf

[ ]( )−1

=(a)
A− BL−1

infC
( )−1

A−1B CA−1B−Linf

( )−1

CA−1B−Linf

( )−1
CA−1 Linf −CA−1B

( )−1

[ ]

= A−1 0

0 0

[ ]
(20)
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where the equality (a) comes from formula 0.7.3 in [38].
Moreover, A is a positive definitive matrix, since A is a
combination of a Hermitian matrix and a positive diagonal
matrix. Hence, Σv = A−1 is a positive definitive matrix.
Now, the lemma comes. □

Then, we can give the proof of Theorem 1.

Proof:Without loss of generality, we omit the superindex i in
xi, yi, si, Φi and Ψi during the proof. Lemma 2 implies that
only the non-zero recovered entries sv and corresponding
transform basis Ψv take effect. By Lemma 1, the
differential entropy for s can be directly derived based on
the corresponding posterior probability in (9), namely

H(p(sv|y, l, l0))

= −
∫
p(sv|y, l, l0) log p(sv|y, l, l0) dp

= 1

2
log |S v| + C = − 1

2
log |l0QT

vQv + Lv| + C (21)

where Θv =ΦΨv and Λv is defined in Lemma 2. Moreover,
the dependence of differential entropy on the measurement
y is reflected by the related covariance and hyperparameters.
If we add another measurement according to the new
measurement vector rT, we could obtain a new
measurement matrix Fi

new = FT r
[ ]T

and a new Θnew =
ΦnewΨ. Meanwhile, (21) would be updated as

H(p(sv|ynew, l, l0))

= − 1

2
log |l0(Qnew)

T(Qnew)+L| + C

= − 1

2
log l0 CT

vF
TFCv +CT

v rr
TCv

( )
+Lv

∣∣ ∣∣+ C

= − 1

2
log S −1

v + l0C
T
v rr

TCv

∣∣∣ ∣∣∣+ C

=(a)− 1

2
log

∣∣S−1
v

∣∣∣∣1+ l0r
TCvS vC

T
v r
∣∣( )

+ C

= H(p(sv|y, l, l0))−
1

2
log 1+ l0r

TCvS vC
T
v r

∣∣ ∣∣ (22)

Here, the equality (a) follows from the Schur complements
and determinantal formula [38]. By Lemma 2, the last term
1
2 log 1+ l0r

TCvS vC
T
v r

∣∣ ∣∣ of (22) is positive. Consequently,
a newly added measurement could contribute to decrease
the ‘error bars’, since the measurement vector could be
selected intentionally. The claim follows. □

Next, Corollary 1 can be easily proved, after taking into
account that the equation Ci(S i)(Ci)T = Ci

v(S
i
v)(C

i
v)
T

holds for any i∈ {1, …, P}.
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