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Human Mobility Patterns in Cellular Networks
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Abstract—This letter investigates inter-arrival time, dwell time
distributions and other mobility patterns in mobile cellular
networks. It has been generally assumed and widely accepted that
both inter-arrival time and dwell time distributions can be well
approximated by exponential distribution. However, based on
real cellular data measurements, we evaluate the fitness of various
typical statistical distributions such as power-law, exponential,
Weibull, lognormal and Rayleigh distributions, and find that
a power-law distribution fits both inter-arrival time and dwell
time more precisely. Besides, mobility patterns in daytime, night,
rural and urban areas provide further demonstrations of the
power-law model. Moreover, new models on the distributions
of inter-departure time and the number of arrived subscribers
are also proposed to characterize other mobility patterns, and
the corresponding simulation results are well consistent with the
empirical ones.

Index Terms—Human mobility, inter-arrival time, dwell time,
inter-departure time, the number of arrived subscribers, power-
law, cellular network.

I. INTRODUCTION

UMAN mobility patterns play an important role in

protocol design and performance analysis of cellular
networks. During the past ten years, many researchers have
designed and analyzed various cellular network management
schemes, taking for granted that inter-arrival time and dwell
time are either exponentially distributed [1] or other similar
distributions [2]. On the other hand, several power-law (Pareto)
distribution phenomena have been discovered in various areas
of human behaviors lately, such as time intervals between
consecutive emails sent by users obey power-law [3], dwell
time and sign-on inter-arrival time in WLAN adhere to power-
law as well [4]. Other non-exponential distributions have also
been observed for the dwell time in WLAN scenario [5].
[6] reports that travel length and pause time of human can
be modeled as truncated Pareto distributions by GPS traces.
[7] also concludes that inter-contact time can be described
by the power-law distribution. The findings above inspire
us to speculate that the inter-arrival time and dwell time in
cellular networks might follow power-law distribution rather
than exponential distribution.
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To validate the above assumptions and models, the most
effective way is to carry out measurements in real cellular
networks, and examine the fitness of various distributions to
the observations. In this letter, we make an intensive study
on temporal and spatial human mobility patterns through
the collected practical cellular networks’ observations in one
month. Our measurement results validate that the inter-arrival
time and dwell time of mobile subscribers can be more
accurately modeled using power-law distribution, compared to
exponential distribution. Moreover, although the inter-arrival
and dwell time have been previously discussed by a number
of papers [8], however to our best knowledge, no paper has
ever investigated inter-departure time of mobile subscribers
within cellular networks. We model the distribution of inter-
departure time according to the patterns generated from the
power-law distributed inter-arrival time and dwell time, and
verify the newly proposed model through the comparison with
the measurements of actual traces of mobile users. Meanwhile,
to describe the spatial imbalance features of mobility patterns
in a large area, we also analyze the distribution of the numbers
of arrived subscribers in unit square area during a period of
time, and find that power-law distribution is suitable to fit as
well.

II. DATASET DESCRIPTION

Our dataset is based on 1 month anonymous traffic records
collected from 7 million subscribers, originated from about
15000 GSM or UMTS base stations (BSs) of China Mobile
within a region of 3000 km?2. Each record includes timestamp,
anonymous subscriber ID, location area code (LAC) and
cell ID. Besides that, each traffic record also contains the
subscriber service activities such as calls and short messages,
as well as network activities like location updates, handovers
and pagings. The abundant information in daily traffic records
amounts up to 30 Gigabytes and provides a sufficient dataset
foundation for our analysis and evaluation. Furthermore, the
dataset is sorted and classified by temporal and spatial proper-
ties, like daytime/night and rural/urban area. Here, we regard
one daytime subset as the group of records with timestamps
from 9 AM to 5 PM, while the timestamps in a night subset
range from 10 PM to 5 AM. Similarly, the rural areas consider
the places like countrysides and villages while the urban areas
merely include cities. Suburb areas are included in neither
rural nor urban subsets, so as to make distinct decisions.

III. INTER-ARRIVAL TIME AND DWELL TIME

In this section, inter-arrival time and dwell time of sub-
scribers in a BS are discussed. The time between two consecu-
tive arrivals of subscribers can be obtained based on the arrival
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Fig. 1. The fitting results of inter-arrival time by candidate distributions.
TABLE I
INTER-ARRIVAL TIME: AIC TEST OF CANDIDATE DISTRIBUTIONS.
Distribution Probability Density Function AIC Weight
Power-law (PL) at=? 13833 1.000
Exponential (EXP) ae~bt 20395 0.000
Weibull (WB) abtb—1e—at’ 14137 7.4 x 10797
1 (In(t)—a)?
Lognormal (LN) T exp[——5rr"—] 19455 0.000
Reyleigh (RL) - expl— 3] 30311 0.000

timestamps of subscribers in the traffic records. Therefore,
the probability density function (PDF) of inter-arrival time,
denoted as p;(t), can be calculated from the recorded dataset,
where ¢ is sampled in the order of minute. Afterwards, the
distribution of inter-arrival time is fitted using the common
heavy-tail distributions listed in Table I. Fig. 1 depicts the
relevant fitting results with respect to the empirical data,
where the unknown parameters (e.g., a, b) in the distributions
are found by maximum likelihood estimation (MLE) method.
Together with the MLE, an Akaike information criterion
(AIC)' [9] is applied so as to quantitatively find the best
distribution model. Table I summarizes the AIC results and
indicates that a power distribution p;(t) = 0.706t~%5® mostly
approximates the empirical inter-arrival time.

To examine the influence of the temporal and spatial factors
on inter-arrival time, the dataset is classified into several
subsets in either temporal or spatial dimension. Fig. 2(a) and
(b) show the impact of temporal and spatial properties on
p;(t), respectively. Besides, Fig. 2(c) illustrates the distribution
of inter-arrival time during one day, where the sample unit is
zoomed from minute to second. As Table I shows that Weibull

VAIC values are calculated by the following formula [9]:
AIC = —2log(L(-|data)) + 2K (1

where L£(-) is the likelihood function and K is the number of estimable
parameters in the approximating model. Let AIC), iy be the minimum of
AIC values of M candidate distributions, the Akaike weight of the ith model,
which is considered as the normalization of the model likelihoods, is defined
as [9]:

M exp[(AICmin — AIC;)/2)

(@)

g

i =

The Akaike weights can be interpreted as the relative preciseness when all
the models try to fit the empirical observations on the basis of minimal
(estimated) information loss. Therefore, the model with largest weight is the
most promising one to describe the data distribution in the candidate models.
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Fig. 2. The distributions of inter-arrival time under different conditions.

TABLE II
PARAMETERS OF POWER-LAW DISTRIBUTION AND COMPARISON OF AIC
WEIGHTS IN FIG. 2(A)(B)(C).

Parameters Daytime Night Rural Urban Second Minute
a 0.817 0.661 0.576 0.722 2.867 0.706
b 2.598 2.585 2.518 2.666 2.388 2.582
wpr, 1.000 1.000 1.000 1.000 1.000 1.000
ww B 7.5 x 10725 0.000 0.000 0.000 1.4 x 10~1% 0.000

distribution is the second best model for inter-arrival time, the
fit goodness of the power-law distribution is only compared
with Weibull distribution for simplicity. Table II lists the fitted
parameters of the power-law distribution (i.e., a and b in at~?)
and AIC weights in each case. It can be found that in all
situations, the slopes (i.e., b in at*b) are almost identical.
Additionally, the slopes of the daytime and urban subset are a
little steeper than those of the night and rural subset, because
the mobility is more frequent in the former scenarios.

Fig. 1 also indicates that most of the inter-arrival time takes
small values. Therefore, a few large values will be submerged
in daytime. Consequently, it’s still worthwhile to investigate
the distribution of maximal inter-arrival time in each cell. Fig.
2(d) presents the measured result and cumulative distribution
function (CDF) of maximal inter-arrival time. In Fig. 2(d),
the solid lines indicate that 20% of cells have a maximal
inter-arrival time larger than 1 hour. After giving a deeper
investigation on the timestamps and cells with maximal inter-
arrival time larger than one hour, we also observe that 90.4%
of the timestamps appear at night while the corresponding
ratio is 3.2% in daytime. Moreover, the phenomenon emerges
in 48.9% of the cells locating in rural areas and 21.1% in
urban areas.

Furthermore, after categorizing the incoming subscribers of
a cell according to their next hops (adjacent cells), we discover
that the slopes of p;(t) are irrelevant with the subscribers’
destinations (adjacent cells) and remain basically the same
(Mean=2.53, Standard Deviation=0.12). This conclusion will
be used in the next section to model the arrival-departure
process.

Similar to p;(t), the PDF of dwell time denoted as pq(t)
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Fig. 3. The fitting results of dwell time by candidate distributions.
TABLE III
DWELL TIME: AIC TEST OF CANDIDATE DISTRIBUTIONS.
AIC test PL EXP WB LN RL
Values 8834 13557 12506 9128 30981
Weights  1.000  0.000 0.000 1.63 x 1075*  0.000

can be calculated, where ¢ is also rounded to minute. Fig. 3
compares the fitting results using heavy-tail distributions with
MLE and Table III summarizes the goodness of fit by AIC
test. It can be easily observed that the power-law distribution
fits more precisely to the measured pg(t) using 0.3137¢~ 147,
Thus, the power-law distribution p4(t) = at " is adopted for
further discussions. Here, it is worthy to note that lognormal
distribution becomes the second best model, hence we merely
compare power-law with lognormal in the study of the dwell
time distribution.

The PDFs of dwell time with respect to temporal and spatial
views are plotted in Fig. 4(a)(b), as well as in different time
granularities in Fig. 4(c). Besides, the fitting parameters in
power-law distribution and corresponding AIC weights are
listed in Table IV. It comes to the conclusion that cells
with different temporal and spatial properties have almost
identical distributions which could be well fitted by power-
law functions, where the only distinction between them is
pointed to the heavy-tails. The distribution of the maximum
dwell time shown in Fig. 4(d) is quite different from that of
the maximum inter-arrival time in Fig. 2(d); here, several peak
values appear at 1 minute, 2 hours and 6 hours. These values
might be attributed to the following reasons: 1 minute dwell
time originates from the subscribers passing through the cells,
6 hours dwell time represents the schedule of normal office
workers, and periodic location updates of terminals (T3212 in
3GPP TS 24.008) exert influence on 2 hours dwell time.

Subsequently, based on the power-law distribution at~°, we
look into the conditional probability of inter-arrival and dwell
time deduced as follows:

(b—1)(1+1t/s)"°

Pr(T > s+t|T > s) =p(t|s) =

3)

where ¢ denotes the excess waiting time given that the previous
subscriber has arrived since s minutes ago. (3) implies that the
power-law distribution exhibits a memory property, differing
from the exponential distribution. Hence we can predict the
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Fig. 4. The distributions of dwell time under different conditions.

TABLE IV
PARAMETERS OF POWER-LAW DISTRIBUTION AND COMPARISON OF AIC
WEIGHTS IN FIG. 4(A)(B)(C).

Parameters Daytime Night Rural Urban Second Minute
a 0.295 0.239 0.270 0.356 0.980 0.314
b 1.422 1.517 1.407 1.442 1.359 1.47

wpr, 1.000 1.000 1.000 0.862 0.896 1.000
WL N 0.000 3.4 x 1048 0.000 0.138 0.104 0.000

following arrival time and the excess dwell time by (3)
whose distributions are depicted in Fig. 5(a)(b), respectively.
Interestingly, a is irrelevant to p(t|s), and p(t|s) performs like
a power-law distribution when ¢ > s.

IV. INTER-DEPARTURE TIME AND THE NUMBER OF
ARRIVED SUBSCRIBERS

Suppose that a cell has N adjacent cells (i.e., Cagj1,
Cadj2, -+, Cagjn). Therefore, the inter-arrival time for sub-
scribers, whose next hop is Cggj;, still adheres to power-law
distribution p;(t), whereas the corresponding dwell time for
a subscriber obeys power-law distribution pg(t). Recall the
conclusion in Section III that the dwell time of a subscriber is
independent of both inter-arrival time and the corresponding
next hop. Hence, the arrival-departure relationship can be
modeled as N memory birth-death (MBD) processes (Fig.
6(a)), whose PDFs of inter-birth time and life time are p;(t)
and pg(t), respectively. As a result, the inter-death time of
N MBD processes can explicitly describe the inter-departure
time of the cell (Fig. 6(b)). In Fig. 6(d), the simulation
and measurement distributions are plotted whereas Fig. 6(c)
depicts the fitting result using MLE and shows the inter-
departure time is still power-law distributed. Unlike traditional
birth-death (BD) process whose birth rate and death-rate are
memoryless [10], MBD process with power-law distributed
inter-birth time has a complex form of birth rate [11].

The last proposed model concerns the number of arrived
subscribers into a pixel region within a time interval 7'. We
define a 50m x 50m region as a pixel and T" as 24 hours.
Usually, each pixel belongs to a certain BS, whereas one
BS could cover several pixels. Without loss of generality, the
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proportions of pixels with & arrived subscribers in the interval
T are denoted as p, (k). In Fig. 7(a), the measured PDF p, (k)
and CDF are plotted. It suggests an imbalance pattern that
in one day about 9% of pixels have less than one subscriber
arrived, whereas 50% of pixels have less than 70 arrivals. More
importantly, the PDF p, (k) can be well fitted using a power-
law distribution with MLE, as shown by the AIC test in Table
V. Yet, Fig. 7(b)(c) and Table VI illustrate that the slope of
pa(k) at night is a little steeper than that in daytime.

V. CONCLUSION

In this letter, we study the human mobility models of inter-
arrival time, dwell time, inter-departure time and number of
arrived subscribers in unit square area, based on the dataset
from on-operating cellular networks. In particular, we show
that the human mobility models exhibit considerable power-
law characteristics. These findings also indicate that the human
activities have memory property, which make the activity
prediction reasonable. Moreover, the imbalance property of
number of the arrived subscribers establishes a macroscopical
view of human clustering and aggregation attributes.
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TABLE V
NUMBER OF ARRIVALS: AIC TEST OF CANDIDATE DISTRIBUTIONS.
AIC Test PL EXP WB LN RL
Values 7291 9563 7405 8393 18720

Weights ~ 1.000 0.000 1.51 x 10725  0.000  0.000

TABLE VI

FITTING RESULTS OF NUMBER OF ARRIVED SUBSCRIBERS IN FIG. 7

Parameters ~ Daytime  Night Rural Urban Total
a 0.117 0.225 0.167 0.127  0.087
b 0.981 1.195 1.013 0968  0.927
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Fig. 7. (a) The PDF and CDF of the number of arrived subscribers. (b) The
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